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PREFACE
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Department of The Aerospace Corporation, of developing tech-
nique s for  analyzing and simulating the dynamics and control of
large flexible spacecraft .  The following are previous related
publications.

• Jerkovsky ,  W . ,  “The Transformation Operator Approach
to Multi-Body Spacecraft Dynamics. Volume I, The
Transformation Operator Formulation; Part 1, Momentum
Approach , ” Aerospace Corp. , El Segundo , Calif. ,
TOR-0075(5624-Ol)-l , 6 December 1974.

• Jerkovsky, W . ,  “The Transformation Operator Approach
to Multi-Body Dynamics , ” Aerospace Corp. , El Segundo ,
Calif. , TR-0076(690 1-03)-5 , 10 May 1976.

Additional related reports are in preparation.

The present report describe s work performed under

Engineering Methods of the Guidance and Control Division,
Engineering Science Operations. I wish to thank Ms. Karen Saito
for her skillful typing of the manuscript .
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I. INTRODUCTION

During the last twenty years , the cont rol sy stem analy st has

been f aced with m ode ling the dynamics of multibody s pa cecraft

with ever increasing f idel i ty .  Thi s requi rement  for increased
dynamics modeling sophistication is due in part  to increasing

co ntrol acc ur ac y requirement s , inc reasing spacecraf t  maneuver-
ing requi rements , increa sing spacecra f t s ize and structural
flexibility , and finally,  an increasing number of moving parts
on board the spacecraft .  A considerable number of papers~~

16

has been devoted to thi s subj ec ted prior to 1970 , and an even
17-44 .larger number since 1970. The dynamics equations can

get so complicated (because of the large number of t e rms)  that

it is diff icult  to see the fores t  for  the t rees .  A similiar prolifer-
ation of term s in dynamics equations has occurred in the study of

45-54the dynamics of mechanisms and linkages

The purpose of the present paper is to describe the general

form of the dynamics equations of motion for an arbitrary de-

formable  body undergoing large deformat ions .  In order to keep
the equations completely general , no par t icular  mater ial  pr oper-

55-56ties (i. e. no constitutive equations ) will be introduced . In
this respect , the present  paper is similiar to that of McDonoug h 57

except that we do not introduce any equations f rom continuum
mechanics.  Instead , we consider th e def ormable body to consist
of a large number of particles (say 1025 molecules)  of neg ligible
inert ia 58 ~~

. The deforrnable body consisting of N part icles then
has 6 “external” and n “internal”  degrees of f reedom , where

n � 3N - 6; if there are no constraints  among the N part icles
then n equals 3N - 6 , but if there a re  s constraints  then
n = 3N - 6 - s. The separation into “ external”  or “ ri gid body ”
degrees  of f reedom and “ internal”  or “defo rmation ” de grees  of

— 5—
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freedom is similiar to that introduced by Teixeir a and Kane 62 .
If the equations of motion are l inearized in the deformat ions ,  then

our equations reduce to the corresponding equations in the litera-

ture. If the deformat ions  are taken to be zero , then we recover
the equations of motion for a ri gid body. A topolog ical t ree of
ri gid bodies can be handled by letting the deformation coordinates
r e p r e s e n t  the relat ive gimbal ang les (and relative hinge displace-
ments , if any ) between conti guous ri gid bodies. Almost all the
spacecraf t  dynamics equations in the l i terature can be obtained by
introducing appropriate specializations into the equations present-
ed herein.  Howeve r , there are two types of spacecraf t  dynamics
problems not considered herein: the dep loyment of roll-out
booms or solar a r rays , and mass expulsion as in rocket eng ine
firing.

There are a number of controversies and misconceptions in

the spacecraft dynamics literature on several basic mechanics

issues. One of these controversies deals with whether a

“Newton-Euler” (Or “vectorial”) dynamics formulation is prefer-

able to a “Lagrange-Hamil ton ” (or “analytical  dynamics” or

“variational dynamics”) formulation. Often it is claimed that a
“Newton-Euler ” formulation has the advantage of being “more
physical” , but a “Lagrange-Ham ilton” formulation is preferable
because constraint forces  are automatically eliminated. We will
show in this pape r that our approach (which mi ght be called

“algebraical dynamics ”) has both of the above advantages. Our
equations have the form of those of Newton and Euler , but the

procedure we use to get the equations is essentially due to

Lagrange and Hamilton. Our approach is similiar to that of
K ane 

63-65 except we make extensive use of t ransformat ion
operators 6 6 6

~~to make velocity t ransformat ions ,  which in turn
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induce appropriate momentum and force transformations. The

t r ans fo rma t ion  operator  fo rmal i sm is based on Kron ’s method of
70-73

subspaces , which in turn is based on the procedure used

by Lagrange to go from Newton’s vector equations for particles

to Lagrange ’s equations in terms of generaliz ed coordinates.

Another controversy centers about whether it is preferable

to use velocity or momentum as state variables .  Russe l l  has

been the pr incipal proponent of the momentum formulat ion of

spacecraft dynamics problem. Recently, Vance and Sitchin
74 76

have also been advocating the momentum formulation. The con-

troversy here is sirniliar to the question of whether Lagrange ’ s

or Hamilton’s equations are preferable for spacecraft dynamics

equations. We will see that our approach allows us to get the

Lagrange and the Hamilton equations in a simple algebraic man-

ner which does not require forming Lagrangians and Hamilton-

ians and then taking partial derivatives. Thus, our app roach

allows us to get both the velocity and the momentum equations

for the deformable body.
Nonlinear dynamics equations for a deforrnable bod y can be

obtained by expressing the particle displacements (relat ive to a

fixed or floating re ference  f r am e )  in te rm s of the eigenfunctions

or ei genvector s of the corresponding (or closely related) linear-

ized equations of motion. Different  choices of re ference

f r a m e s 58 ’ 5 ’ 77 79 and d i f ferent  choice of ei genfunctions or

eigenvectors can be made. We will maintain generali ty by not

specif ying the form or nature  of the particle displacement  f ield;

we mere ly assume that some displacement field funct ion doe s

exist , and we assume this func t ion  is continuous and has con-

tinuous part ial  der ivat ives  of up to the second order  (so that we

can interchange the order of two partial different iat ions) .

-7-

_ _ _ _ _  
_ _ _  

-- ~~~~~~~~~~~~~~~~~~~ -- - --~-- -~~~~-



The dynamics  equations for  a spacecraf t  are sometimes

wri t ten  relative to a point fixed in the s t ruc ture , and sometimes

they are writ ten relative to the total center  of mass .  We will

mainta in  general i ty  by writ ing them relat ive to an a rb i t r a ry

point which may be fixed in the s t ruc ture  or not; in par t icular ,

the point may be the total center  of mass .

Our dynamics equations for a deformable body are given in

Secti on V , page 65. Our “momentum formula t ion” equations are

+ X = i~ and ~~~ = ~~~, where ~ is the system velocity , 0 is the
system momentum (which is defined so that the kineti c energy is

l — t . _  ~~~~~ . . .given by T = -~~G cr) , ~J. is the system mass (which yields

T = ~~ c ) ,  K is the system force  (which yields T = Kt .•
~

)
and X is an extra term which must be added to the time derivative
of ~ so that the result is K. Our “velocity formulation ” equation
j~ ~ ~ + Y = I~ where ~ is an extra term which must  be added to

the system mass times the system acceleration so that the result

is K. Of course , our dynamics equations are not adequately de-

scribed until each of the variables in the equations is well defined.

The variables for the “external” or “rigid body ” degrees of f r ee -
dom are described in Section II in te rms of the corresponding
variables for the individual particles which constitute the deform-
able body. Section III describes the variables for the “internal”
or “deformation” degrees of freedom . Most of Section IV is
taken up in determining f i r s t  the general  fo rms , and then the

explicit expressions for X and Y; the expressions for j1 and K
are actually quite st r aightforward.

-8-
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II . CLASSICAL VECTOR EQUATIONS

We will s ta r t  out wi th  Newton ’ s law for  a par tic le , wri t ten

re la t ive  to an ine r t i a l  ori g in. Thi s law app lies to each of the

par t ic les  of the system of par t ic les  which r ep resen t s  our  de-

fo rmable  bod y. By assuming that action is equal and opposite to

react ion , the in te rna l  fo rces  drop out of the equations which

describe the external degrees of freedom ; however , ~hese inter-

nal forces do enter the equations for the internal degrees of

f reedom (except that purely constraint  f o r c e s  drop out) .

A . EQUATIONS RELATIVE TO AN INERTIAL ORIGIN

In this subsection , we int roduce the vec tor  notation and

equations 80 81 which we use to descr ibe  the deformable  bod y

relative to an iner t ia l  ori gin. We number the par tic les  f rom

1 to N and we r e f e r  to a typical part icle  as the ~
th par t ic le  or

.4
particle i , where 1 � ~ 

� N. Let r~ be the position vector of the
.th . . . . . . -.
i particle relative to an iner t ia l  r e f e r ence  origin.  r will , in

general , vary with time , t. The velocity of the 1th particle , ~~~~,

is equal to the inertial time derivative of i~, and is denoted by

.4dr .
.4 .4 1v. = r. = — (2-1)
~ dt

Thi s is a “mater ia l”  time der ivative~~
5 5 6  since it is the velo-

city experienced by a part icular  mate rial point of the deforrna-

ble body.

Let m1 be the mass  of the 1th particle and let M be the

total mass of all particles. Then a point c , the total center of

mass ,  is given by the position vector 
~ 

where

-9-
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-
~ =±~ ~ xn~~ (2 - 2 )

M i

wh e r e

M = m. (2 -3 )

In Equations (2 )  and (3) it is unders tood that  the summation is

over all the par t ic les ;  i. e. fo r  i = 1 to N. The velocity of the

center  of m a s s,  
~
‘c ’ is g iven by

1
.4 .4 -4
V r m v .  (2 -4 )

C c M I

The l inear momentum of par t ic le  i , ~~~~, and of the whole

system , F, are  given by

.4 .4
p. = m v .  ( 2 - 5 )

.4
P = ~ 

(2 - 6 )
1

Combining Equations (4) to (6)  yields

~~~ ~~~~~~~~~~~~~~ ( 2 - 7 )

The kinet ic  ene rgy  of particle i , T1, and of the whole

system , T , are given by

*We use the following convention : if a r e f e r enced  equation appears
in the same sect ion as the r e fe r e n c e ,  ~.hcn the section number  is
de l e t ed  f rom the equation n u m b e r .

- 10-
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1 - .2  1- .  -~ 1 -~~2T. = - ~ m1y ~ = ~~~~~~~~~~~~~~~~~~~ (2 - 8)

T = ~~~~T. (2 - 9 )

- 2 -~~ 
- —.2 —s. —

~~~wherc~ ~~ • v .  a nd P1 
= From Equations (8) and (5)

we note tha t

~ T.
1 --4 -4

= m .v .  = p~ (2-10)
v.

1

~~T.
i .4 .4

—
~~~~~

‘
~ 

= y ~ 
(2-11)

~~p. m .

It should be noted that in Equation (10) T. is considered to be a

function of whereas  in Equation (11) T1
is considered to be a

funct ion of 
~~~~~

. The confusion between these two d i f fe ren t  func-.

tions can be eliminated by using d i f fe ren t  symbols for  the two

kinetic energy funct ions , but fo r  simplicity we will not do so.

Since each of the particles is independent , Equations (8) to (10)

yield

~~T. ,
-. 

(2 - 12 )

~~v. ~~v1. 1
4

~~T ~~T. .~= (2 - 13)
pi ~~~

— 1 1 —  

~~~~~~~ . - - —“-- -~~~~~~~~~~ -~~- --- .~~~~~~~~~~~~~~~~
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Thus , f rom the system kinetic ene rgy  funct ion , T , the ~th

par t i c le  momentum and the 1th part ic le  velocity can be obtained

by par t ia l  different ia t ion.
thLet f 1 be the f o r c e  on the i part icle . Then Newton ’ s law of

motion can be wri t ten as

(2-14)

or

= 7 (2 15)

or

m.~~. 7 (2-16)

Equation (14) is a “momentum equation” and Equation (15) is a

“velocity equation. “ Since the mass  m. is a constant, the

momentum and velocity equations differ  only by this constant
.9

fac tor .  Let F denote the total fo r ce  on the system :

(2-17 )

Now we can write f.  as the sum of f. which is an external  fo r ce
1 1 —*1(whose ori gin is from outside of the deformable  body) and

which is an internal  f o r c e  (due to the coup ling among the mass

points of the bod y).  We assume Newton ’s thi rd law , that action

is equal and opposite to react ion , and conclude that

~~~ f.  = 0 (2 - 18)

— 1  .~~—
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Hence

= ~~~ 
(
‘7E + f ’) ~~~ 7E ~~E 

(2-19 )

Combining Equations (6 ), ( 14), and (19) now yields

~4P = F  = F  (2-20)

Thus , Newton ’ s law for a particle also holds for the composite

system linear momentum.
Taking the time derivative of the kinetic energy of the

particle yields

T. mv. ’ v. f. ’ v. (2-2 1)

The time derivative of the kinetic energy for  the entire system is

T T — f V.  (2 -2 2 )

Note that the tim e derivative of the total kinetic energy depends

on both internal and external fo rces;  i .e. the total kinetic

energy can change with time even in the absence of external

forces .
We have now writ ten all the fundamental equations rela-

tive to an inertial ori gin. In the next subsection we write these

equations relative to a moving (possibly accelerating)  ori gin.

- 13-



B. EQUATIONS RELATIVE TO A MOVING ORIGIN

We now introduce an a rb i t ra ry  point , a , with position
—~ . . .‘ ~‘vecto r r and wtth velocity v = r . Let R. be the position

vector to particle i (or point 1) from point a. From Figure 1, it

is evident that we can now write

r. = r a + 1
~ia (2 -2 3)

Multiplying this by m 1 and summing overall i yie lds

= m.~~. = M~ + Mn’ (or = a + n’ca~ 
( 2 - 2 4 )

1

where

.4 ‘cc-’ ~MR ~~~~m .R .  ‘2 -25ca 1 ia

Thus , 
~~ca 

is the position vector to the center of mass , c , f rom

the point a. Taking the inertial time derivative of Equation (23)

yields

= 

~a + (2 - 26 )

The a rb i t r a ry  point a may coincide with (be equal to) c. In that

case , Equations (23) and (26) become

.9 .4 .4
r. = r + R ic (2 -2 7 )

-14-
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1 / ...‘
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~~~~~~~~~~ ~~~~ m oving
f rame

inertial
f r ame

Figure 1. Diagram of Position Vectors For
a System of Particles
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-9 .4 :9
v. = v + R. (2-28)
1 C ic

From these two equations it follows that

-4 -4
m. R. = 0 ( 2 -2 9 )

1 ic
1

~~~ 
m. n’. (2-30)

Equations (29) and (30) are consequences of the fact that c is

the total center of mass.

Using Equation (26),  the system linear momentum becomes

-4 -4 :9
P = Mv + M R  (2 -31)

a ca

where , from Equation (25),

M R  L.i m. R. (2 -32 )
ca . 1 ia

1

.4 -4

if a coincides with c , then Equation (31) reduces to P = Mv
.4 

c
because R = 0.cc

The system kinetic energy can now be written as

T = ~~M~~~
2 + M~ ~~ca + ~~~ m.~~~.

2 

. 

(2-33)

Note that the partial derivative of T with respect to V
a 

is P:

- 16-

___________



- —~~~~-—--- —.-- —~--- --- 
- - -

~~~
-- -_ _

~~~
--

~~
- _ -—— -- - — --

~
.-

~~~~~~~~
—- -- _ - _ - _ ----_--- -_ - .--

-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= Mv + M R ca 
P (2 -34 )

If a coincides with c , then Equations (33) and (34) reduce to

1 -’ Z l V  ‘ Z
T = — Mv + ~~- L..e m .R .  (2 - 35)

2 c ~~ 
. ~ ic
1

-4 -,
= Mv

~ 
P (2 -36)

As is usual when taking partial derivatives, Equations (34) and

(36) have to be interpreted carefully becau se the two equations

deal with dif ferent  functions . If T denotes the kinetic energy
a *

function in terms of the independent variable v , and Ta c

denotes this function in te rms  of v , then we can write
c

~~~~~ . a c
1~~~ - -9

a c

From Equations (22) and (26) , we get for  the time deriva-

tive of the system kinetic energy

T~~~~~~~ fi~~~ %’i~~~~
’
~~~~a + 

~~~~~j ’’
~ia 

(2 - 37 )

where F = F is the total external  fo rce .  
. . -9

The angular momentum about the point a of particle i , h . ,

and of the whole system , 1
~a

’ arc given by 
ai

-17- 
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w~~~~.

.4 -4 -4
h . R. x p. (2-38)

al ia i

-4 -4
H = h . 

(2-39)
a . ai

1

N

Thus , 
~~a is given by

-4 ‘
~~~~

•‘ _., —+ c ’ -~~ -+

H = L4 R
~ 

x = m . R ia 
x v. (2-40)

If a coincides with c , this expression becomes

~~~ ~~~~~n’~c
x
~~~i ~~~ m . ñ’. x v .  (2-41)

-4 -4 ..
If we write R. = R. + R in Equation (40),  we find that

ia 1C ca

-4 -0 -4 -4

H = H + R x P (2 -42)
a c ca

-4 . -0~~~

We get an alternate expression for I-i by expressing v. in term s

of 
~ a as given by Equation (26). Then

-‘ - ‘cc’ -~

H = MR x v + L~~ m. R. x R. (2-43)
a ca a . 1 ia ia

1

If a coincides with c , we get an alternate expression for  H~~
:

-4 -4
H m . R .  x R. (2 -44)

c . 1 ic ic
1

Taking the time derivative of Equation (40) y ield s

-18-
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L.~ R~~~x p ~~+ Ls R I x  (2-45)

:9 -4
We substitute p. = f. on the ri ght hand side , and then introduce

the torque or moment of force , i~, on the system about the

point a:

-0 V’ -) -0 V’ + ‘E EL = 
~~~ 

Rj a x f 1 = ~~~ R 1 x f .  = La (2-46)
1 1

where we have assumed that action is equal and opposite to

reaction and hence

‘V’~~~ ‘i
L.. ~ R~~~x (2-47)

Next we note that

E R .  ~~~~~~ (
~j

_
~~a

)x j
_
~ a

* P (2-48)

Combining Equations (45) and (48) and making use of Equation (47)

now yields

-4 -4 -0
H + v  x P = L  (2 - 4 9 )a a a

If a coincides with c, this reduces to

= 

~ c 
(2-50)

-0 -0 -4
since v P 0.c 
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The definition of the total torque about the point a ,

Equation (46) ,  and the definition of the total angula r  momentum

about the point a , Equation (40) ,  are  very similiar.  This simi-

liarity can be enhanced by introducing the moment of force  about

the point a on particle i , 1ai’ as follows

. 4 . 4I - = R. x f. (2-51)
ai ia i

Then

L = 
~~~ 

1
ai ( 2 - 5 2)

Note the similiarity of Equations (51) and (52) to Equations (38)

and (39), respectively.

The angular momentum is a fundamental  quantity but we

cannot obtain it by partial differentiation of the kinetic energy

function given in Equation (33). Thi s situation will be remedied

in the next subsection where we introduce an angular velocity, and

then the angular momentum can be obtained by partial differen-

tiation of the kinetic energy with respect to thi s angular velocity .

C. EQUATIONS RELATIVE TO A ROTATING FRAME

In the last subsection , we obtained the following expressions

for the linear momentum, ~~~~, angular momentum about a , ii .
kinetic energy,  T , and time derivative of kinetic energy ,  T:

-0 -0
P = M v  + L...d m. R. (2-5 3)

a . i ia
1

-2 0-
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-~ -0 -9 .4
H MR x v  + I m .R .  x R .  (2-54 )

a ca a . 1 ia ia
1

1 - ‘2  V’ -4 i v  4 2
T = — Mv + L.j m. R. - v + — L_i rn . R. (2- 55)

2 a . i ia a 2 . 1 ia
i i

- -0 -0 ‘V’ -~ -0
T = F - v + L.~ f. R. (2 -56)

a i. la

We will now rep lace the inertial time derivative of n’ia in

these equations by the time derivative with respect  to a f r ame

(which we can call “ f rame  B”) which has angular velocity W
-0

with respect  to inertial space. We know that for any vector V

we have

-‘B ‘V V + W  X V  (2 -57)

-,
where V denotes the t ime derivative of V with respect to the

f r a m e  with angular velocity ~
B(i e. with respect to f r a m e  B).

Applied to the vector n’ia~ 
Equation (57) yields

-‘B ‘R. = R. + W x R. (2-58)ia ia ia

It is convenient to let u. denote R.ia ia

-‘Bu. = R~ (2-59)

It is also convenient to write

—‘B ‘ ‘-t Bw R. R. • U’ (2 -60)
ia la

-21-
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where ~~~
‘
. is the skew-symmetr ic  dyadi c formed from the

- -

vector R. , and R -  is the dyadic t ranspose  (or conjugate)  of
ia ~, ia

Thus, R. can be expressed as
ia

~‘ ‘B ~-t -‘B
R. u + R .  • ‘2-61

ia ia ia

Substituting Equation (61) into Equations (53) to (56) yields

‘ ‘ ~~t -‘B 
‘
~~~~
‘ -‘B

P Mv + MR U) + L..~ m. u. (2-62)
a ca - i i a

1

-‘ ‘ -‘B ~~~~
‘ 

—

H = MR • v + I W + L.s rn . R. u .  (2 -63)
a ca a a - 1 ia ia

1

1 - ‘2  V’ B ‘ ~~~ -‘B

T = — M v  + L_s m .u .  • v + v MR U’ (2-64)
2 a . i ia a a ca

+ 
1 ~ B 

~a 
~ B 

+ ~~~ ~~~~~~~~~~ R~ ~ B 
+ E m.~~~~

2

• -, -‘ ‘ -‘B ‘cc-’ -‘B
T = F • v + L • U) + ~~~~~j f. u .  (2 -65)

a a . i ia
1 p

where

= E m.R ia 
‘ ‘~ia 

= (2-66)

81
Evidently, 1a 

is the iner t ia  of the deforrnable body about the

arbitrary point a. If a coincides with c, we have

* See Appendix A
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~‘ ‘V’ tI = L..j m.R. R - (2 -6 7 )
C . 1 1C ic

i

.4 -0 -3
If we write R. = R . + R in Equation (66),  we find that

ia ic ca

49 ~‘ -
I = 1  +MR • R (2-68)
a C ca ca

Considering V
a 

and U’ to be independent variables in the

kinetic energy function given by Equation (64),  we see that

~~~~ 
=~~~~ (2 - 69)

a

~~T
a 

(2-70)

Here the partial derivatives of T are understood to mean the

partial derivatives of the function T 
B-.~ given in Equation (64).

Th e tim e de riva tives of and 
~ a 

are still given by

:9 -0
P = F (2-7 1)

-0 -~ -~H + v x P L (2-72)

Equations (69) to (72) are very simple but very general equa-

tions which hold for any deformable body, even a body containing

fluids82 . However , Equations ( 69) to (72) describe only the 6

external degrees  of freedom of the deformable body. In order to

describe the n ~ 3N - 6 internal  degrees  of f reedom of the system

- 23 —
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of N pa r t i c l e s, we mus t  somehow introduce n appropr ia te

coordinates  and velocit ies.  In addition , it would be desirable

to in t roduce  n appropr i a t e  momenta .

It is i n s t ruc t i ve  to write Equations (62)  and (63 )  in the

following matrix form

—‘ ‘—t 4+ - . • 
4+ ‘ 

—

P MJ~ MR m E  m E  m E  vca 1 2 N a

-‘BH MR I m R , m R  m R  U’a ca a 1 ~a 2 Za N Na

U Ia

U 2a

-‘B
U Na

IJ
44

where E is the identi ty dyadic. Since the system ha s only n

in te rna l  degrees  of f reedom , the relative veloci ty  vec tors
‘B -‘B

U 1 ,  U 2 ,  ~~~~~~~ 
U N mus t  be expres sed  in t e r m s  of only ii

coordinates and velocities. Also , there  are n more  momenta

which character ize  the internal  deg ree s  of freedom of the

system .

*See A ppendix B.
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Ill. INTERNAL G EN E R A L I Z E D  COORDINATES

If there are n internal  degrees  of f reedom described by
B B B

internal generalized coordinates 
~ al ’ az ’ ~~~~~~~~~ ~ an ’ then each

u .  must  be a l inear combination of the time der ivat ives  of these
ia

internal generalized coordinates. Thus, we can write an equation

of the fo rm

= ~~ ~ B ~B (3-1)
ia j = l  

iaj  aj

where  . in general, depend s on the internal  generalized
iaj B B B

coordinates 
~ al’ a2’ ~~ ~ an 

howeve r , 
~ ia 

does not depend

on the t ime derivatives of the in ternal  general ized coordinates.
-4

Now R. i s a function of the 3nternal generalized coordinates ,
ia

and we assume that R. is not an explicit function of time. Hence
ia

= ~~~ ~ B (3-2)
ia ia 

~ 
a~~

B aj
aj

Comparing Equations (1) and (2) ,  we see that
.4

~ R.
lB = 

ia (3 3)
iaj ~~~B

aj

Equation (1) can be written conveniently in matrix form as

f ollows :

See Appendix B

- 2 - c - 
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-
: :~~~~~

-‘--- 
~~~~~~~~~~

- - --
~~~

I

= 
[!al ~~ia2 ~~ian][~~ai [~~~

1 ~
‘
~a •~~~~~• ~ B ]  

~~~~

~~ia2

( 3 — 4 )

an ia~
j

This can be written more  compactly by introducing the following

notation

ial

ia ia2 (3..5)

ian

~~~t 
[~~~~ 

V~ .. V~~ j  (3-6)
ia ial iaZ ian

= (3 7)

“ an

- 2 - b -



- 
-
~~~~~= 

---
~~~~~~~~~~~~~~~~~~~

[ 
~~a2 (3-8)

Equation (1) can now be written as

= 
B

t •B  
= ~~~

t
~~~

3
a 

(3-9)

These two d i f f e ren t  form s of express ing  u .  are useful in form-
-‘B2

ing quanti t ies  like U j a

-‘B -‘B .B t 
B Bt Bu .  u . • u .  ~~ ~~~~. ~~~~. ~~ (3-10)ia ia a ia ia a

where  t
~ a 

l~ is an n x n mat r ix  of s ca la r s :

V~
’ 1 (3- 11ial • [ ial ia2 ianJ

ia ia ia2

ian

V3 . ~ B lB ... lB .
ial ial ial ia2 ial ian

lB • lB lB ~B 
•~~~~~. lB •

ia2 ial ia2 ia2 ia2 ian

• lB . • . .  -

ian ial ian ia2 ian ian

-27-
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Thus , the e lement  in the j  row and k column of . . isla ia

( B  • Bt)  = I B . . (3- 12)
\ ia ia jk iaj iak

Equations (9) and (1 0 )can now be used to write Equations (2-62)

to (2-65) in the following fo rm

~ t -‘B B •B
P = Mv + MR ‘ W + L.i m.~~ . (3-13)

a ca . i i a  a
1

-~ — ‘ ~‘ -‘B B -B
H = MR v + I W + L.s m.R .  • 

~~~ . (3-14)
a ca a a . i ia ia a

1

1 - ‘2  ‘ —t -‘B ‘ V Bt .B
T = — Mv + v MR U’ + v L_~ m.~~. (3 .45)

2 a a ca a - 1 ia a

~~~~~~~~~ ~~~~~~~ :~:~~
+!.~~~

t 
~~~~~~~ B • 

B1
~~

1
~

2 a . 1 ia ia a
i

- —0 —~ ‘ —‘B ‘V’ ’ Bt B
T = F v + L • U’ + L..~ f. ~~. (3- 16)

a a . i ia a
1

Note that in each of these equations we have a summation over

all the particles (from i 1 to N). We can eliminate this

explicit dependenc e on the individual particle s by int roducing

the following notation —

= 
~~~ 

rn.~~~~ 
(3-17)

* See Appendix B
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---~ -- 

~~~~~~~~~~
--- — - -  V 

~
- .~~:=-

= ri-i . (3 - 18)a i ia

= E ~~~~~~~~~~~~~ RI = m~~~. 
~~ a 

(3-19)

B 
= 

~~~~ 
= ~~~ m.~~~~ ~

‘
i~a 

(3-20 )

= 
~~~~ ~~ a 

~~~~~~~~~ 
(3-21)

= E 
~~ 

= E ~ ~~ a 
(3-22)

k B • = ~~ . (3-23)

Equations ( 13 ) t o  (16 )  now become

—‘ -‘ — t  -‘B B BP = Mv + MR U’ + ~ (3-24)
a ca a a

~ a
M
~~ca ~

‘a~~~~a 
~~B~~~~B

t
~~B (3-2~

T 5 M~~~
2 + 

~ a M~~
t • ~ B + 

~~a 
B (3-26 )

~~1~~ B 
~
‘
a ~~~~~~~~ .~~B B 1~~~B

t
),B ~B

- —‘B B
t ‘BT = F v + L • w + k ~ (3-2?)

a a a a

- 2 - 9 -  
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These equations can be written conveniently in matrix form as

follows
C
:

[j= [:
~~~~~~~~~ 

M a 
(3 28)

1 r~ ‘B .Btl B
t

T — i v U’ ~ ~ ME MR v
2 L a a j  ca a a (3 -29 )

MR 
~

‘
a 

B
t 

~B

Btl ~~~~~~~~T = I F  L k 1 v (3-30)
L a a j  a

a

In addition , we have the relationships

P (3-3 1)

a

See Appendix B

-3 0-
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-4 3 3 2
B~~~~~~a 

( -

where here the partial derivatives of T mean the part ial  deriva-
-0 ‘Btives of the function of v , U’ , and 

~ a (and of the internal

generalized coordinates ‘ 

~~z’ 
..

‘ given in Equation

(29).

We have now achieved our objective of expressing the

fundamental quantities in terms of the velocities of the 6 external

degrees of freedom plus the velocities of the n internal degrees

of freedom. However , so far , we only have the external momen-
-9 -~ta P and Fl ; we would also like to have n internal generalized

a
momenta. Since the external momenta can be obtained by

partial differentiation of the kinetic energy with respect  to the

angular velocities , we are led to define the n internal generalized

momenta by partial differentiation of T with respect to ~~~~~~ . De—

noting the internal generalized momentum by g~ 
we thus have

~~~ g~~~~c 
~~~~~~~ 

• ~
B + V B ~B (3-33)

Combining Equations (28) and (33) now yields

B
t

P ME MR v (3-34)
ca a a

(9 Bt -‘BH — M R  I w
a ca a a

g~~ ~:v~

-31-
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--

1 ‘B .Btl ., 1 
~ ~~ B~l .4

T = !~~
v ~ 

~~a J ~~ = ~ [P ~~~ ~~~~ J • V
a 

( 3 _ 3 5 )

-‘B

We now have a full set of external and in te rna l  velocities,

plus a full set of external  and internal  momenta.  A full set of

dynamics equations is a set of equations for  F, H , and g , or

a set of equation s for 
~~~~~~~ 

and ~B • Equation: (2-71) and (2-72)

give us expressions for P and H , respectively; this will be a

full set of dynamics equations as soon as we get an equation for
.B
g (see Section V, page 65).

Recall that we defined ~~and 
~~a 

in tern-is of (Equations (2-6)

and (Z-4O),respectively). Thus, we were able to obtain equations
:9 . -

for P and H by simply differentiating these defining equations
a :9

with respect to time , and then using Newton ’ s law to rep lace p.
-0 . . . B . - 

1

with f . .  In the next section we will define g as being given by
—0 a B
p. - From this definition we will obtain ~ as

ia 1 a
i

-‘ ‘
~~~~
‘ B ~‘

4’ ~ j a ~i + ia ~~ 
When we replace p. with f. we

notice that the second of these summations  is simply k B as

defined in Equation (22). We will then have our c-quation fo r
.13 V’ B -, 

- 
V

a s soon as we put L~ ~ ia ~~ 
in a more  convenient  form

which does not involve an exp licit summat ion  over par t ic les .  Of
cou r se , we also have to show that th~ definition of ~

B 
as

V’ B - . B a

ia p~ is equivalent to the def in i t ion  of g a as in

Equati on (33).

-

- I _ _ _ _
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IV. TRANSFORMATION OPERATOR EQUATIONS

We will now use the t r a n s f o rm a t i o n  operator approach to

derive the desired full set of equations of motion for our deform -

able body. The transformation operator formalism has been

documented in References (66) and (68) and therefore we will give

here only a brief summary in a form most suitable for  applica-

tion to a deformable body. It is interesting to note that the en-

ti re formal ism, which is based on Kron ’s method of subspaces
70 73

,

is essentially a generalization of linear matrix s t ructural  analy-
83-84 . . .

sis. The generalization consists mainly of starting out

with coordinate dependent velocity t ransformat ions  rather  than

with linear and constant coordinate transformations. In general,

coordinate transformations are nonlinear , but the corresponding

velocity transformations are always linear.

A. BASIC FORMALISM

The equations of motion for  a dynamical system with a

finite number of degrees of freedom can be put in the form

G + X K (4-1)

where 0 is the system momentum , K is the sy stem f or ce , and

X is an extra term which is quadratic in the momentum.  In

general  X also depends on the coordinates. The momentum G is

linearly related to the system velocity ~~:

G = i i .  (4-2 )

where p. is the system mass.  Taking the time derivative of

The final equations obtained in this section a re  summarized  in
Section V , page 65. The r eader ma y wish to look at Section V
before reading Section IV.

-33-
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Equation (2) and then subst i tut ing into Equation (1) y ield s

& + Y = K  (4-3)

wh e r e

Y = ~ + X (4-4)

Equation ( 1)  is a “momentum f o r m ula tion ” whereas Equation (3)

is a “velocity formulation. ” The principal d i f ference  between 
V

the momentum and velocity formulations is that in the momentum

formulation we have the extra term X whereas  in the velocity

formulation we have the extra term Y. Often it is simpler to

obtain X than it is to obtain Y (this is certainly the case if to
V V . 74-76

obtain Y , we f i r s t  obtain X as indicated in Equation (4) ).

In addition to Equations (1) to (4) , we also have the

kinetic energy expressions

T = 5c , t • p. • ~~ 1 0t . (4-5)

. t
T = K  • (4-6)

G (4-7)

When performing the partial different ia t ion of T with respec t  to V

we conside r T to be the quadra tic fun ct i on of c~ g iven in

Equation (5).

The system mass is posit ive defin i te  and s y m m e t r i c, and

th e r e f o r e  it has a positive def ini te  s y m m e t r i c  inverse  \~ :

-

- - . —
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p. = (4-8)

Therefore, Equation ( 2 )  can be inver ted  as follows

c y v G  (4-9)

Consequently, the kinetic energy can also be expressed as

T = 5G~ ~ = . V 0 (4- 10)

From this follows the relationship

— (4-11)

where he r e we conside r T to be the quadrat ic  f unc ti on of C given

in Equation (10) .

We now make a linear velocity t r ans format ion

(4- 12)

where 5 is a new system velocity and A is the t ransformat ion

operator. In conjunction with thi s velocity t ransformat ion, we

- also make the following momentum and f-orce t ransformat ions

G A t . G (4-13)

E A t . K (4- 14)

-35-
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We also make a congruence  t r a n s f o rm a t i o n  on the mass:

= At . p. • A (4-15)

Subst i tut ing E quation (12) into E quations ( 5 )  and ( 6 )  and then

making  use of Equations ( l 3 ) t o  ( 15 )y i e l d s

l _ t  — - - l — t
T = -

~~
- 

~ 
• • G (4-16)

—t —T K  ~~
- (4 17)

Thus ~~, ~~, ~~, and K are  p roper ly defined in order to keep the

functional form of T and T invariant.

Differentiating G with respect  to tim e yield s

G + X K (4- 18)

wh e r e

X = At . X - At • G (4- 19)

We also find that G and ~ are r elated as f ollow s

• (4 -2 0)

Substituting Equation (2 0 )into Equation (1 8) yield s

• ~~ + Y = K  (4-21)

-

—- 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ _ V ~~~~~~~~~~~ ~~~~~ V - - _ _ _ _ _
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where

• +~~ 
(4-22)

We get an alternate expression for Y by substituting Equation (12)

into (3) and then multiplying the resulting Equation (3) from

the left by At . The resul t ing Y is

(4-23)

U Equation (22) is used to obtain ?, then it obviously requires

more effort to obtain Y than to obtain only X. However, if

Equation (23) is used for  ~~, it is not clear whether it is simpler

to find this Y or the X given by Equation (19) . In fact , by

writing G p .  A ‘ 5 w e can put X in the form

(4-24)

Comparing Equations (23) and (24) , we note that both ~ and ~?

appear to be equally complicated.

In general , the t ransformat ion operator A is not invertible ,

but it is alway s one-to-one (alternatively, it alway s has full column
85-86

rank).  Therefore , A has a left inverse B so that

B A = 1  ( 4 -25)

where 1 is the identity of the same dimension as 5 (and also of

the sam e dimension as G , K , X , and Y).  From Equation (25)

it follows that 
V

-3 7-
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At Bt 
1 (4 -2 6 )

Thus , At has a ri ght inve r se Bt . However , in genera l , A does

not have a r ight inverse , and the re fo re  At in genera l  doe s not

have a left inverse. Consequently, Equation (12) can be solved

for

5 = B  ~ (4-27)

but Equations (13) and (14) cannot similiarl y be solved for  G

and K in term s of 0 and K , respectively. Simili ar ly,  Equation

(15) cannot be solved fo r  p. in t e rms  of T~.

Since p. is positive definite symmetr ic  and since A is one-to-

one , it follows f rom Equation (15) that ii is also positive definite

s y m m e t r i c .  The refo re  ~ has a positive defini te symmet r i c  in-

ve r se  V :

= (4 -2 8)

Thus ~ can be expressed as follows:

= V 0 = (4 - 29 )

It can be shown from genera l t ensorial cons idera t ions  t hat

there exists a C such that

-

~~ 
= ~ +~~ 

~ t (4 - 30 )

x (~ = . 
p .  • (4-31)

~ is l i n e a r  in and in the  C h r ist o f fe l  s y m b o l s  (wh ich  g t - m - r .~ I —
ly are function s of t he  ,- (V ) ( )  r ( Ij l u t t ( -  s) .

-



V 

~~~~~~~ .~~~~~~ :.

• ~~t . 
~ (4 -32 )

Now define ID by

i i= c  . (4 33)

Then Equations (30) to (32) become

-
~~ = D + D

t (4 34)

X D  ~ ( 4 35)

= . (4-36)  
V

where we have made use of the fact that ~ is symmetr ic

(ii~ = ~ t
) From these equation s it is part icularly evident that

- 5  (4-37 )

From Equations (35) and (36) it is evident that if we obtain X V

and Y by f i r s t  obtaining D, then X and cj~ are obtained with equal

difficulty .

B. APPLICATION TO A DEFORMABLE BODY

In order  to use the t r ansfo rma t ion  operator  fo rmal i sm , we

must start out with a set of -:, p., C , K , X , and Y which satisfy

Equations (1) to (3). Then we m u s t  i n t r o d u c e  a new veloci ty

~ and a t r a n s f o r m a t i o n  o p e r at o r  A. The t r a n s f o r m a t i o n  opera-

tor f o r m a lism then does the r e s t .

- - - *-~~~ VI
.:- 

~~~~~~~V V  - _____



_ _ _  _ _ _  

--

F
We cons ide r  a system of N par t ic les  and we let ~ be a

th
column mat r ix  of N v e c t o r s , whose i e lement  (vec tor )  is v . ,

the velocity of the 1th part icle:

.4
v~

~~~~~
-

(4-38)

VN

We define p. to be an N x N mat r ix  of dyadics  which is diagonal
th 44

and whose i diagonal element is m .E , where m. is the mass of
.th - 

i i

the i particle:

0

m

4+
m 2E

p . = (4-39)

m N

where the off-diagonal elements of p. are the zero  dyadic. Since

G = p. ~ we see tha t G must  be a column mat r ix  of N vectors ,
th thwhose i element is p~, the linear momentum of the i particle:

-40-
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~~~~~~~~~~~~~~~~~~~~~~~~ .-

if

C — (4-40)

Next , we def ine K to be a colum n matrix  of N vec tors , whose
th -, th

i element is f~ , the fo rce  on the i particle:

- 4 -

K (4-41)

Since we have = we obviously have X equal to zero:

X = 0 (4-42)

Thus , X is a column matrix of N zero vectors.  Similiarly,

since in. v. = f. , we also have Y equal to zero:
i i  1

Y = 0 ( 4 - 4 3 )

-4 1-
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and t h e r e f o r e  Y is also a column mat r ix  of N z e r o  vec tors .

Thus , the equations of motion for  the system of pa r t i cl e s  are

C = K (sinc e X 0) (4-44)

G = p .  - (4-45)

These equations represen t  the momentum formulat ion.  The velo-

city formulat ion equation is

p. = K (since Y = 0) (4-46)

We now define ~ as follows:

Va

—
~~~~= U’ (4-47)

-0
where v is the inertial linear velocity of an a rb i t r a ry  point a as

a -‘B .introduced in Section II , W is the inertial  angula r velocity of an

arbi t rary f rame  B as introduced in Section II , and is an n

element column matrix whose J
th el ement  is ~B , which is the

th aj
time derivative of the j internal  genera l ized coordinate .

W e de t e r mine the t r ansf o rmation ope rato r  A by combining

the following three equations (see Equations (2-2 6) ,  (2-61), (3-1), and

( 3 — 9 ) )

v. = v + R. (4 -48 )
i a ia

~

V V

V~



- ~~~~~~~~~~~~~~~~~~~~~~~~

‘ ‘B ~~t - B
R. u. +R. w

ia ia ia

-‘B 
= ~‘B ~ ~ B 4, B

t 
~~B (4-5 0)

ia j = l  ia aj ia a

Thus we have

~i a i
t
a 

~~B~~~~Bt
~~~B (4-51)

149 —t Bt l
1 E  R .  ~~~~

. v
L ia i aj  a

a

Thus , A is given by

~ ~~t ~Bt

A 
~ 

la 
(4- 52 )

H ~~~a ~~~a

G is now defined by

-43-
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44 40 43 -
E E E p1

— t ,— -V.--G = A C = R 1 R 2 
“-  R Na P2 (4 53)

la 2a Na

=

i

V B -,
L.s~~~. - p.ia i
i

From Equation(Z-6> .ve see that the f i r s t  element of 0 is F, the

total system linear momentum . From Equation(2-40)w e see the

second element of ~ is 1
~a ’ the total system angular  momentum

about a. We will denote the third element of 0 by g~~. Later , we

will see that this is the same quantity which we introduced in
Equation(3-33) and which we ca lled the internal generali zed momen-

tum . Thus , 0 is given by

-0p

(4 - 5 4 )

B  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~_VV ~~~~~~~~~~~~ . V  _ _
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K is obtained similarly:
_
‘c-’ -0 

- 

~~~-0~~~~
Lj f

1 
F

i

— t v’ -.- -, -4
K = A K =  L.~~R. 

.f. = L
ia i a ( 4 — 5 5 )

k B

— ~ 
ia i 

— 

a

where we have made use of Equations(2_l7),(2_46), and(3-22). Thus,

the f i r s t  element of K is the total (external)  force on the system ,

the second element of K is the total (external) torque on the

system about a , and k~~ is a quantity which we can call the force
on the internal degrees  of freedom . If we split f. up into an ex-

-‘E . . . . i

ternal  part f. (whose origin is f rom outside of the deform able
-‘I

body) and an internal part  f 1 (dun to coupling among the mass

point s of the body) ,  th cn we can wr it e

k B 
= kBE + k~~ (4-56)

a a a

whe r e

= 
~ra ~~~~ (4 57) 

V

k~~~ ~ B . 
~~

1 (4 58)

ii is obtained as follows V

-45-
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V - ~V_ ~V~ V — 
~~~~~~~~~~~~~~~~~ V - - - V. V • - V~ _V . V V~~~~~~~~~_ V__V~~~~~ -. -- - —

~‘ —4 Bt
m - E L.~ m - R - m -

• 1 • i ia . i i a
i i i

~~~= A
t . p . . A  ~~~~ m .R.  ~~~~~~~~~ R~ ~~~~ m .R.

i ia i ia ia i ia ia

~~~ m~~~ ~~~ rn~~~~ R.t ~~~ m~~~ 
B

- i ia . i ia ia . 1 ia ia
1 1 1

4’ ~~ B
t (4 59)ME MR ca a

t
= M~~ 

~‘

ca a a

a a a

where we have introduced M from Equation(2-3), MR f rom
ca

Equation (Z -ZS)~i a 
f rom Equation(Z -66),~’ a 

from Equation(3 -17),

from Equation(3-l9), and f rom Equ ation(3-2 1) .

The equati on 0 p. - is now precisely Equation( 3 -34)

given in Section ilL This proves the s tatement  that g B as de f ined

in thi s secti on is the same quanti ty as defined in Section III:

g~~ = 
~~~~~~ a 

- 

i = 
~~~~~~ 

- 

~ a + ~~B + (4-60)

If the a rb i t r a ry  point a coincides with the total  cen t e r  of mass  c ,
then P = Mv and R = 0 imp ly tha tc cc

= 
~~~~ 

rn~~~~ = 0 (4-61)

— - 4 b —
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V ~~~~~~~ - -- n--- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

Hence , in this case , the internal  general iz ed mom en tum i s

given by

g
B 

= ~~3 
- = • ~ B + ( 4_ 6 2 )

where

= ~~~~~~ m.~~~ 
- RI (4-63)

= E m.~~.B ~~ :

t 
(4-64 )

Note that after the a rb i t r a ry  point a has been specified (say , by

letting a coincide with c), we still have arbitrariness in ~~~ g~~
and due to the arbi t rar iness  of the f rame  B.

C. THE FORM OF X AND ~ FOR A DEFORMABLE BODY V

So far, our application of the transformation operator form-

alism to a deformable body has not really yielded much more

than could be obtained from linear matrix structural ana lysis.

However , it should be noted that our formalism has additional

flexibility bec aus e we are  actually using a coordinate dependent

t ransformat ion  matr ix A [E quation (52)  1, and thi s t ransf orma

tion matrix has some elements which are  dy adics and some

elements which are row mat r ices  of vectors .  The key ingredien ts

in a set of exact dynamics equations is the ext ra  t e rm  X or ~~~~~ 
V

which depends quadratically on the m o men t u m  or veloc i ty .  The X

and Y t e rms  cannot be obtained f r o m  linear m a t r i x  s t r u ct u r a l

analysis  becaase  these t e r m s  depend on the t ime  der i v a t iv e  of

- -17-
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~~~~~
V
~~

•_ V
~~~ 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V

I

the t r ans fo rmat ion  operator  A. We flow tu rn  to de termining  the

fo rm of X and Y for  the deformable  bod y. 
V

Since in the p resen t  app lication both X and Y a re  z e r o , we

have from Equations (23) and (24)

~~= _ A t . G = _ A t . p . .  A -  (since X 0) (4 -65)

Y = At p. A - (since Y = 0) (4-66)

Comparing Equations (65) and (66) with Equations (34) to (36),

we see that in this case

ii= At . p. • A (4-67)
_

4+ 4., 
-

O 0 0 V

= ~~~~m. R . ~~~~m. R . ~~~~~~ ~~~~~ Iy1 .f~ 
•
~~~~~~

1 ia . i ia ia . i ia ia
1 1 1

~~~~~~~~~~ ~~~~ ~~~~~~~~~~ 
.~~~B

t

• i ia . i ia ia • i la ia V

1 i 1 
t

+4
where 0 is the zero dyadic , and 0 repres ent s a row matrix of n

zero vectors. We can write D more compactly as follows:

44 +4 
-

0 0 0

MR D22 D23 (4 -6 8)

a 32 33

— 4 K -

- -  -- V _ _ _ _ _



-~~~~ V~ 
V~~~ V —

~
::-.

where

ID22 
= m.R.  - R . (4-69)

= in~ Ri (4-70)

= ~~~~ m.~~ . • (4-71)
23 i ia ia

= ~~~ m.~~~ 
(4-72 )

33 . i ia ia
i

Hence

-

~~~~ M~~
t 

-

~ + = M~~ D22 + ‘~23 + 
(- 1-7 3)

_
&~~ D32 + ID23 

ID33 +

Taking the time derivative of T yields 
—

M~~
t

= M~~ 
B

a a a 
-

Since i-i = ii + we see that we now have

= 

~2z + D t ~‘t (4 75)

~

V V • V . V . V .  - V , .~~~~ ~~~~~ —— —— V ~~~~~~~~ - -



= D + ii ~ (4 7 6)
a 32 23

= D33 + b33
t 

V

We can now write X and Y as

-4
0

— — ‘ — ‘B —
X = -D - 5 = - MRca ~r + D22 

U’ + 
~~23 ~ a 

(4-7 8)

& B . ~ +~~~ • ~~~~~~~~ ~ B
a a 32 33 a

Mgt - ~ B . ~~~Bt
~~ B

= ~~~t ~B + ~~~t ~B ( 4 7  9)

— t -‘B — t BID23 
- + D 33 ~ a

-4 -0 
V

We will now show that the second element of X is v x P asa
required by Equation(Z-49) . Note that

-0 -0 —0 -0 -0 -,
-MR - v = -M(v - v ) x v -Mv x v ‘4-80’ca a c a a c a

-0 -4
x

a

Next we show that

- B -
~ID22 

- LU + D23 ~~a 
= 0 (4-81)

-

_ _  ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — - - -  — —--~~~~~-~~~~~~~~~~.---
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~--.- --~~~~~~~~~~~~~~.

From Equations (69) and (71), we see that this requires

~~~~~ - - ~ B + ~~~~~ ~~~~~~ = (4-82)

Factoring out the common term m.R. and intrcducing R from
1 ia ia

Equations (48) and (51) allows us to write Equation (82) as

m .R. R. = 0 (4-83)  V

- i ia ia
i

Thi s equation i s obviously sat i s f i ed  and the re for e Equation (81)

is established. Thus, Equation (78) can be writ ten as

.4 .4
X-+ 0 0

V

X = X~~~ = - MR 
~ a = “a ’ ~ ( 4 - 8 4 )

X V
a 

+ ID 32 
~ B + X

where we have introduced the symbols X~ , X..B , and X - B for
a W

the elements of ~~ Note that ~ i s an n element  column ma-

th a
t rix of sca la r s ;  the j element  of this  m at rix i s denoted by

X .B -

aj

The expression for Y given in Equati on (79) cannot be sim-

plified. However , we can get an a l ternate  express ion for  ‘1 f rom

= p. • 
~ + X. Using Equation (74) for  p. and Equation (84)

— 5 1 —
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~~~~~~~~~~~~~~~~~~~~~~~~ 
. .. .

for  X y ields

~~~ ca ~ B + & Bt
~~ B 1

= ~~~~~~~~ 
~ a ~~~ a 

~~~ + + MR ca ~
‘a (4- 85)

- + ~B 
- + ~~B ~B

a. a a a a

or 

r~a MR t ~ B + Bt B

= 

~~~B ~a 
W + (4 -86)

~ 
~~~~t • ~ B + ~~~~t ~ B

where we have introduced the symbols Y~ , , and 
~~

‘ 

•BV w

the elements of Y. ? is an n element column matr ix  of sca-

th a
la r s ;  the j element  of thi s matr ix  is denoted by V

aj

Lagrange t s equation for  the in t e rna l  genera l ized  coord ina tes

takes the fo rm

(~~T \ - ~~T = k B (4-87)
dt a

- ->2 -

V - -~------- —------- —-. —- -- - - ----
~~~~~-—--— -

~~
-.



The f i r s t  te rm on the lef t  is T h e r e f o r e , the second te rm on

the l e f t  is X B - Thus , an a l ternate  exp re s s ion  for  X is

—

X .B = - 
B (- 1-8 8)

We will re turn  to this equation a f te r  we get exp licit express ion s

for  B and X .

D. EXPLICIT EXPRESSIONS FOR D, X, AND Y FOR A

D E F O R M A B L E  BODY

The e x p re s s i o n s  for  D , X , and Y given above , show the

gene ral form of these quantities, but they do not show exp l ic i t ly
- •  -‘B - B -

,

the dependence of these term s on the velocities v , J~ , and 
~ a

From Equation (67), we note that in o rder  to get  exp licit expres-
— - B  -0 -‘B

sions for ID, we need to express  R . and ~ - in t e r m s  of v , a
-B 

ia ia a
an~~~ -

Fr om Equations( Z-5~~, ~~-59~ ( 3-1), a n d ( 3-9)we  have I
.B t B ~~BR. ~ ~~ . + W • R. ( 4 -89)

ia a ia ia

and from thi s follows
—
~1

- • 
1~_~ ~~~

= ~ B • 
B + ~B - - ~~

- ~~B (4 (fl ) )
ia a ia ia ia

where ~ is formed from 
~~~ 

by rep lacing all v e c t o r  e l e m e n t s

by the skew-symmetric dyadic of these vectors. Thus ,

-5

L  
~~~ A
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ial

~~ia 
= 

ia2 (4 -91)

ian

Taking the t ranspose  of Equation (90) y ields

~~i
t
a = 

~ Bt 
~ B 

- ~~i
t
a 

• 
-~ B + ~~B - ~

V
i
t
a (4-92)

where w~ have changed signs in the second and third t e rms  by
~~B ‘~B ~~Bt

using U’ -W - It should be noted that 
~ ia is the t ranspose  of

of Equation (91):

t 1~~~t t t‘~ B i~~ -i3 ~~B . TB
= I ~~~ . ~~. ( 4 _ 0 3ia L ial ia2 ian

L ial ia2 ian

A ga in , to f orm we f i r s t  fo rm as in Equation (91), then

t r anspose  this ma t r i x , and while we t r a n s p o s e  the ma t r i x , we
~~Bt

rep lace each element  by its t r anspose .  We do not f o r m  
~ia by

f i r s t  fo rming  
~ ia and then replacing each vector e l emen t s  by its

s y m m e t r i c  dyadic;  in fact , as shown in Equation (93 ) ,  we

actual l y want the  negat ive  of this.  It is easy to see tha t

p 
.
~~~~~~~~~

~ 

- V - -~~~~~~~~~.



~Bt 
- 

~~~~~ 
(4 94)

a ia ia a

Compar ing Equat ions  (90) ,  (92) ,  and (94) now shows that this

peculiar  minus si gn is Just  what is required to get R ia 
_ R j

t~ •

Since 
~ia 

is a column m a t r i x  of v e c t o r s ,  we get , by a simple

genera l iza t ion of Equation(Z-57) ,the resu l t

= + B 
~~a 

(4 95)

B
where ~~B is the tim e derivat ive of with r e spec t  to f r a m e  B:

ia ia

= > ~ B 
a ia ( 4-9 6 )

ia k ak a~~ B

It is now convenient  to in t roduce  the opera to r  v B 
as fo l lows

a
a

al

?
~~a2



- ,  ~~~~~~~~~~~~~~~~~~~ 
:T I:VIT~~~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- V

If we app ly v B to the vec to r  ‘~ia we get a c o l u m n  m a t r i x  of

avec to r s :

V B

~ia 
= 

~~B R~ (4-98)
a

where we have made use of Equations (3-3)and (3-5)~ If we app ly

B to a row ma t r ix  of vec to r s  we get

~ ia = 
~~B friai ~ ia2 ~~~ n]  

(4 99)

= [ ~~B~~ial ~~B~~ia2

- VNote that each of the e lements  V B ~iak is actually a column m a t r i x

t
of vec to r s , and hence V B ~~~ is an n x n ma t r ix  of ve c t o r s .  The

‘a
t r anspose  of this m~~~rix ~s —

(v ~~B \
t

~~~~ ialj

t t

(
~~ B~~~~a) 

= 

(
~~B~~~ t 2)t (4 100)

t

(v~~ ~ian)

.. 
. - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~
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-

We now re turn  to Equation (96) and take its t r anspose :

t
B ~ t

•1 
~ia ~~ak a 

~~ak 

= (4- 101)

- Taking the t ranspose  of thi s and substi tuting into Equation (95)

yields

V 

= 

( 

~ B
t) 

~~~ + ~~~~~ ~ B ( 4-102)

Evaluation of D

From Equa tions (90) and (102) we ge t immediately

MR = m .R. = + - MR - M~~ ~~B (4-1 03)

= ~~~~ m.~~~ = (~ B 
~~~ + ~~B - (4-104)

i 
\~~~a /

where we have made use of Equation(3-17)in the f o r m

V 

= ~~~ ~~~~~~ (4-105)

~~ 
~~B

t 
= m . V B (4-106)  V

B a - i B la
1a a

When  subs t i tu t ing  Equation (90)  fo r  1
~ia 

into Equat ion (~> ) )

- 5 7-  
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- -

fo r  B22 , we note that in the third t e rm  ge t s  “caug ht ” between
tR. on the left and R. on the ri g ht.  In order  to pull W out of theia ia

summation over the par t ic les , we make use of the following ’:

~~ia ~~i~a = ~ B 
~~ia ~~ia = 

~~ia~~ ia 
~ B (4-107)

-0 -4 
- - -Note that R. R. and R. R.  a re  t r iadics .  We run into a s imil iaria ia ia i a.  

—si tuation when we subst i tu te  R. into Equation (71) fo r  ID . Inia
this case , w gets  caug h t between R.  on the left and ‘1~ ’ on theia
ri ght. In thi s case , we use

= 
Bt 

. ~ B (4-108)

When subs t i tu t ing  Equation (102) for into Equation s (70)
and (72)  to get B32 and D33, respectively,  we make  use of

• ~ B 
= ~ B 

- ( 4_ 1 0~~)ia ia

The f inal  resul t  is that B is given as follows :

[ - -

fl - ‘ . .~~~ 
-- ~ >, 

- 
V (~ ,

V . I’ - ~. V > ~ 
V
~
’
~~

. V1 ~~~

‘ 

~~~ -- ~ 

V 

~‘~: ~~~ 
. ~~~~ . 

,,
~

\ ‘ ,~ 
( v ) ~~~~

” V : ” 

~~~~~~~~~~~~~~~~~~~~~ 
~~~ ~~> . )

~~~~

j  

>“~~~~:
1>

~~~~~~~ .~~~~~ V~~”~~~

( 4 - 1 1 0 )

~ See A ppendix C

V - ~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~ - V V — ~~~~~~~~~ ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~
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V V~~~~~~~~~~

Evaluation of X

We can now get exp licit express ions  for  X by using thi s B in

Equation (78). We f i r s t  notice that the f i r s t  element of X , name-

ly X ’  is ze ro .  The second element  of X , namely X..~ B , was
a W

simplified as shown in Equation (84) because of Equation (81).

We can explicitly verif y Equation (81) by use of B of Equation (110).

When we do thi s , we must  make use of the fol lowing

—B ‘~ ‘B ‘B ‘ -‘ ~~Bw I U’ = W L...s m R .  R. (4-111)
a i ia ia

i

-‘
= w L..~ m . R .  R. • W

- 1 ia ia
1

and

~~~ m~~~~ ~~~ ~~~ = (-1- 112)

4-’Equation (111) follows f rom writ ing ‘a 
in the fo rm

44 r ..4 —0 4.0 —0 
V

= E m . I ( R .  - R. ) E - R. R. j  (4- 113)a . ia ia ia ia

Bt .and Equation (112) follows because ~~~. 
- 

~~~. is an n x n skew-ia ia
symmetr ic  mat r ix  of vectors .  It then follows that

= -MR “a 
= (4 114)

See A ppendix C

~ 
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T V
V I ~~~1II

V ~~~~~~~~~~~~~~~ • V ~~~V->~~~~ :

R a t h e r  than wri t ing  out all of X - B it is convenient  to jus t

wri te  out the j
th 

e lement , X B - Thi: ~
th 

e lement  is obtained by

th a3just using the j element in the column mat r i ces  
~ a and D32, and

- - th -
u s i ng  j u s t  the j row of the m a t r i x  D33 . Thus , from Equation
(78) or (84) we have

— ‘B -‘ — ‘B — - BX
~ B 

= 
~~ aj 

- 

~
‘a 

- (ID 32 )~ W - (ID
33). ~ a 

(4-115)
aj

wh e r e

‘B V’ -~ B
= 7 m .~ ’ . - 14~~116aj - i iaj

i

(ID 32 ) .  
= ~~ m .~~~~ . R~ (4- 117)

(15
33)j 

= ~~~~~ ~~~~~~~ - ( 4 - 118)

When  we take the appropr ia te  rows out of D as g iven in Equat ion

(110) we find
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Now notice that the term which is q u a d r a t i c  in ~ can  i~~- w r i t t en

as

..~~~~ ~~~~~~~~~~~ - • ~ B 1 ~~~b .~~~~ m [ 1 ~
t •~~~t ~ ~~ ~~~~~~~ ~‘i~

i iaj  ia 2 ~ L1zt~ 
ia ia

(4-12 0)

and similiarly for  the term which is quadra t ic  in

~~a

t 
~~~~ = - ~~~~~

t
~~~~mj 

[(
~~B~~~aJ) 

~~~~~

a 

~~~~~~~~~

. (4-121)

In both Equations (120) and (121), we rep laced a te rm by its

symmetric part because the skew-symmetr ic  part  drops out of

the quadratic form expression.

Next we make use of Equations~3-3) and (98) and wri te

-‘B 
/ añ’. \  a 

_ _ _

~ iaj  V~B 
~ a ~~ (

~~~
R

ia) ~ ~ B (4- 122)

-4
whe r e we ha ve ass umed that  R.  and its f i r s t  two par t i a l  deriva-

ia
tives are  continuous so that the order  of par t ia l  d i f ferent ia t ion

can be in te rchanged .  Similiarly we get 
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Making use of Equations (120) to (124) , X .B now becomes
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where  T is given in E q u a t i o n( 3 - 2 6) o r ( 3_ 2 9 ) . Thus , we have now

established that

X B 
= - 

~~B T (4- 12 6)

as a lread y ind icated in Equat ion (88) .
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Evaluat ion  of Y

To get Y we fo rm the t r anspose  of D of Equation (110) and

dot mult iply it into ~~~~. Since the f i r s t  column of bt is
_

ze ro , and

none of the e lements  of ID involve v , it fol lows that Y does not
a —tinvolve v . Now each element  of the second colum n of ID has aa Bte rm  which ends in W , and this t e rm  drops out when we multi ply

it into ~~B; the re fo re , Y does not involve all of j us t as we

found earl ier  that X does not involve all of b.

When we multiply Dt into ä , the result  is

M~~~ •~~ B 
+ 

B~~~~~~ B 
+ 

~~ 
(V

B
t
~~~.B 

(4-12 7)
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t \~~~
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(4-12 8)

= ~ B 
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~~~~~~~~~~ 

B~~~B 
(4-12 9)
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In o rder  to separate  f rom the p a r t i c l e  dependen t  f a c t o r s  in

-B we write out ju s t  the ~th t e r m  as fol lows :

= ~~B • ~~~~~~~~~ - 
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V. SUMMARY OF DYNAMICS EQUATION S
FOR A DEFORMABLE BODY

In the p rev ious  section , we have used the t r a n s f o r m a t i o n

opera tor  fo rmal i sm to generate a set of momentum formula t ion
equations plus a set of velocity fo rmula t ion  equations.  The

m o m e n t u m  f o r m u l a t i o n  equations a r e  the following:

.9
P 0 F

-0 -0 -0
II  + v P = L (5- 1)a a a

— Bg X ka ;B a
“ a

and

44 t Bt .4

P ME MR ~~
‘ vca a a

Bt ‘BH = MR I • U’ (5-2)a ca a a

g : ~ B ~B ~ B ~B

The velocity formulat ion equations are
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T h e se  dy n a m i c s  eq u a t i o n s  f o r m  a c o m p let e  set (in f a c t , two

comp lete se t s )  because  they  a l low f o r  the  de t e rmina t ion  ( say ,  by
n u mer i c a l  i n t eg ra t i on )  of the 6 ex t e r n a l  and n i n t e r n a l  d eg r e e  of

f r e e d o m  motion. Of cou rse , we m u s t  a l so  add some k i n e m a t i c

equat ions , but these equat i on s a r e  st r a i g ht f o r w a r d .

The dy n a m i c s  equat ions  a r t -  c omp le te ly g e n e r a l  b e c a u s e  we

have not in t roduced  any c o n s t i t u t i v~V - equ a t i o n s  to c h a r a c t e r i z e  a

pa r t i cu la r  ma te r i a l .  The m ethod of sp e c i a l i z i ng  these  e q u a t i o n s
- ~ B - - ~B -is to specif y 

~ia fo r  i = I to N. If w e  specif y 
~~ 

via the  elgen-

vectors  of the l inear ized  dy n am i c s  equa t ions , then  the a r e  the

modal  coordinates, and we L e t  th~ dy n a m i c  equations of Bodley
28 , 38 - - - V -and Park ; if we l i n e a r i z e  our dy n a n i i c s  equa t ions  about

ze ro  veloci ty ,  we ge t  the  l i n e a r i zed  v ib r a t i o n  equa t ions .  87 In
BI Vsuch a case , we would also e xp r e s s  k
a 

( s e e . E qua t ion s( 4-56) to
(4-58) ) in t e r m s  of a s t i f f n es s  m a t r i x  and p e r h a p s  in t e r m s  of a

- - -damping ma t r ix .  In thi s case , ‘ . could be cons ide red  as con-

stant  with r e spec t  to f r a m e  B (wh ich  h a s  i n e r t i a l  a ng u l a r  ve loc i ty
- - . B

U’ ), and hence , all the par t ia l  der i v~~t i v e . -s  of 
~ia would be zero .

Our equations a re  really much more  u s e f u l  than  to j u s t  u se

them in a l inearized form . As  a m a t t e r  of fac t , t he  equat ions

can easily be used in the i r  ful l  g e n e r a l i t y  in ti le case  of a c ol-
- - .  - - . - Blect ion of r igid bodies.  In thi s case , the  in te rna l  c o o r d i n a te s  

~ acan be used to r e p r e s e n t  the r e l a t ive  coordinates  ( ro t a t i ona l  and !
or t r ans la t iona l )  between the ri gid bodies; f r am e  B can be f ixed
in one of the bodies , say in the main bod y; k BI 

now r e p r e s e n t s

in terbod y t o rques  a n d / o r  f o r c e s  due to a c t u a t o rs  ( in te rbody
torques and forces which are due to cons t r a in t s  d rop  out ) .  The

resul t ing equations a re  given in R e f e r e n c e  (69) .

We can , of c o u rs e , a lso  app ly our equa t ions  to a colle iion
- . ~~ BI -of f lexible  bodies by in t roduc ing  a p p r o p r i a t e  

~~ 
and k a - Thi s 

~~~~~~~ ~~~~~~~~~ ~~~~ -_ .__ -
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sub jec t  wi l l  be addressed  in a f u t u r e  r epo r t .

All the dynamics  equat ions  of R e f e r e n c e s  (1) to (54)  have  t h e

i~enera 1  fo rm of Equat ions(  5-1) and( 5-2),  or of Equation (5-3) .
V 

Evidently ,  all of these equations a re  s t r a i gh t f o r w a r d  consequen-

ces of Newton ’ s law fo r  a par t i c le :  all we need to do is to lin-

ea r ly t r a n s f o r m  f rom par t i c l e  veloci t ies ,  momenta , and f o r c e s

to system veloci t ies, momenta , and f o r c e s , r e spec t ive ly ,  in

order  to obtain the ext ra  t e rm  X or Y , we need to evaluate the

tim e der iva t ive  of the t r ans fo rma t ion  opera tor  A; but this too

is an ent i re ly algebra ic  p roces s .

The equivalence of va r iou s f o r m s  of ve loc i ty  equat ions  has

been pointed out by Likins88 . In the  p r e sen t  work we have ex-

tended thi s equivalence to the m o m e n t u m  equat ions  and veloci ty

equations fo r  an a r b i t r a r y  d e f o r m a b l e  bod y.

— C , —

. .  
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VI. ( ON CLUD1NG COMMENTS

e.- h a v e  seen tha t  it is possible to obtain the exact  dy n a m i c s

e~ i u t t i o n s  f o r  a d e f o rm a bl e  bod y by using p u r e l y vec to r i a l  tech-

ni q u e s .  The r e s u l t  is  the same as that  ob ta inab ic -  f rom L a g r a n g e ’ s

or }L ,ne l ton ’ s e q u a t i o n s, but we do not have to p e r f o r m  par t ia l

der i va t i v e s  of the k ine t i c  e n e r g y  (excep t , as we did , to show that

th e  r e su l t s  ar e  equ iva len t ) .  Cons t ra in t  fo rces  (and t o r q u e s )  drop

out in our f o r m u l a t i o n  fo r  precise ly the same reason that they d rop
out of l . a gr a n c e ’ s equation.  In fac t , we used essent ia l ly the same.-

p r o c e d u r e  to d e r i v e  our equat ions  as La~~range  used to der ive

L a g r a n g e ’ s equations.

Our approach  is v e r y  similiar to that of Kron  and that  used in

“m a t r i x  s t r u c t u r a l  analys i s ” , and in the “f in i te  e lement” method .

However , t h e r e  a r e  also som e d i f f e r e n c e s  be tween  our method

and that of o thers .  A majo r  d i f f e r ence  is that we use  c lass ica l

vec to r i a l  mechan i c s  to get al l the r e su lts we need. We in t roduce . -

angular  velocity vec to r s  ( r a t h e r  than limiting o u r s e l v e s  to t ime

der iva t ives  of Eu le r  ang l e s ) ;  in thi s r e spec t , our equat ions  a re

similiar  to those obtained by Boltzmann and Hamel , some t imes

called Lagrange  equations in quas i - coo rd ina t e s~~
° Such nonholo-

nomic velocit ies a re  also used ex tens ive ly by Kane .

Finally ,  we should point out tha t  we have developed both a

set  of m o m e n t u m  equat ions  and a set of ve loc i ty  equat ions .  One

set may  be m o r e  use fu l  than t i l e  o t h e r  set , dc ,iending on the

p a r t i c u l a r  problem at hand . U n f o r t u n a t e ly ,  m o m e n t u m  fo rmu-

la t ions  a r e  un fami l ia r  to many  and a r e  not used much .  R u s s e l l ,

and Vance and Sii -h in  ar e  conspicuous e x cep t i o n s .

V 
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Page (equat ion)
Symbol Def in i t ion  of f i r s t  o c c ur r e n c e
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B lef t  i nve r se  of t r a n sf o r m a t i o n  opera tor  A 3 7 ( 4 - 2 5 )  
V

i. e. , t r a n s f o rm a t i o n  operator  which

t r a n s f o r m s  ~ to ~
)

C coe f f i c i en t  of ~~ in the expansion of iL 3 8 (4 - 3 0 )

ID equals C . l - L 3 9 ( 4 - 3 3 )  and
48 ( 4 - 6 7 )

D~ ( i ,j  ) -- e lement  of D , for  i , j  2 , 3 4 8 (4 - 6 8 )

( D 32)~ j
th element  of c olumn m a t r i x  D 32 

60(4-115)

(D ) .th row of ma t ri x  ID 33 
60 (4-115) —

ident i ty  dyadic 2 4 ( 2 - 7 3)

f o r c e  on partic le  i 12(2-14)

ex terna l  f o r c e  on par t i c le  i i 2 ( 2 - I ’~)

in te rna l  f o r c e  on par t ic le  1 1 2( 2 - 1 8 )

F total f o r c e  on sys tem of N pa r t i c l es  12 ( 2 - 1 7 )

F ex te rna l  f o r c e  on sys t em of N p a r t i cl e s  l 3 ( Z _ l ~~)

g~ in te r nal genera l i zed  momen tum , re la t i ve  3 1 ( 3 - 3 3 )

to point a and frame B
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N O M E N C L A T U R E  - Cont inued
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Symbol Def ini t ion of f i r s t  o c c u r r e n c e -

B - B -g special  case of , when a is the 47 (4- 62 )
center  of mass c

C pr imi t ive  system m omentum ; co lumn 4 1 (4 - 4 0 )
m a t r i x  of N v e c t o r s ,  with p as the
.th 1
i e lement

G t r a n s f o r m e d  sys tem momentum ; co lumn 3 5 (4 -13 )  and
- 

—~~ ~V_ ~~ 44 ‘4 54m a t r i x  whose e lements  are  P , H
B a

and g

1
~ai 

angular  momentum , abou t  point  a , of 17(2- 38)
pa r t i c l e  1

total  an gula r  momen tum , a bout point a , 17( 2 -3 9 )
of sys tem of N particles

H total angula r momentum , about  cen te r  18(2-41 )
of mass , of system of N part ic les

‘a total ine r t i a  dyadic , about p oint a , 2 2 ( 2 - 6 6 )
for system of N particles

total inertia dyadic , about cen te r  of mass , ~ ~(2 - 6 7 )

for system of N par t icles

ge~rn- ra lized f o r c e , r e l a t i v e  to point a .~‘-~(3-  .~~)
and f r a m e  B , on i n t e rna l  degree - s  of V

f r eedom
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N O M E N C L A T U R E  - Continued

Page (equat ion)
Symbol Def ini t ion of f i r s t  occur  r~-nee

t
t r anspose  of k B 2 9 ( 3 - 2 3 )

a a

k~~
E ex t erna l  pa rt  of k B 4 5 ( 4 - 5 6)

k~~ in t e rna l  pa rt  of kE 4 5 ( 4 - 5 6 )

K pr imit ive  system f o rc e ;  column matrix  33(4-1)  and
- .th 41(4 -4 1)

of N vec to r s , with f 1 as the i e l ement

K t r a n s f or m e d  sys tem f o r c e ;  column 3 5(4 -14 )  and
A~~~~~4 V 5

ma t r ix  whose elements  a re  F , L , and

kB 
a

V £ moment  of f or ce , abou t point a , on 20 (2 -5 1)

pa r t i c le  i

La 
total moment  or torque , abou t point a , 19 ( 2 - 4 t )

on sy stem of N p a r t i c l e s

F -
~~Lc total moment  or torque , about center  of 1 9 ( 2 — S O)

mass , on sy s tem of N par ti c les

total ex te rna l  moment  or torque , abo ut 1 9( 2 - 4 6 )

point a , on sys tem of N pa r t i c les

mass  of pa r t ic l e  i 9 ( 2 - 2 )

M total  mass  of sys tem of N p a r t i c l e s  9 ( 2 - 3 )  
V
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N O M E N C L A T U R E  - Cont inued

P ag e  (equat i on )
Symbol  Def in i t i on  of i i r s t  o c c u r ren c e -

n n u m b e r  of i n t e r n a l  de~~r c e s  of f r e e d o m  25

of s y s t e m  of N p a r ti c l e s

N n u m b e r  of p a r t i c l e s  in d e f o rm n a’j le bod y 9

0 zero  dyadic  4 8 ( 4 - 6 7 )

l i nea r  momentum of p a r t i c l e  1 10 ( 2 - 5 )

P total l i nea r  momentum of sy s t em of 10 ( 2 - 6 )

N p a r ti c l e s

r posit ion vec tor  to point a f r o m  iner t i a l  1 4 ( 2 - 2 3 )

V r e f e r e n c e  o r i gin

r posit ion v ec t o r  to cen t e -r  of mass  9 ( 2 - 2 )

pos i t ion  v e c t o r  to p a r t i c l e  i fr o m  i n e r t i a l  9 ( 2 - 1 )

r e f e r e n c e  ori g in

in e r t i a l  tim e d e r i v a t iv e  of 9 ( 2 - i )

H pos ition vec tor  to c en t e r  of mass from 14(2-24)

point a

R ca skew _ s y m me t r i c  cl y~ o- f o r m e d  f r o m  22 (~~- 63)

v e c t o r  R ca

R dyadic  t r an s p o s e  of R
ca ca -

R pos i t ion  vec to r  to p a r t i c l e -  i f r o m  point  a 14 ( 2 - 2  
~

)

R i n e r t i a l  t i m e  d e r i v a t i v e  of R .  14 ( 2 -  2 o )
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Page  ( eq u a ti o n )
Symbol  Def in i t ion  of f i r s t  O c c u r r e n c e

R .  R .  R .  1 6 ( 2- 3 3 )ia ia ia

R ia 
skew - - s y m m e t r i c  dyadic  f o rm e d  f r o m  22

v e c t o r  R~ia

1
~~a dyadic t r a n s p o s e  of R i a 2 1 ( 2 - 6 0)

B

R. t ime d e r i v a t i v e  of R. with r e s p ec t  to
ia ia

f r a m e  B which has i ne r t i a l  angula r

ve loc i ty  U~

~~ic posi tion vector to par t ic le  i f rom c e n t e r  14 ( 2 -2 7 )

of m a s s

T. kinet ic  ene rgy  of pa r t i c l e  i 1 0 ( 2 - 8 )

T to ta l  kinet ic  e n e r g y  of s y s t e m  of N p a r t i c l e s  10 ( 2 - u )

T k ine t i c  e n e rgy  f u n c t i o n  in t e r m s  of~~ 17

T k i n e t i c  e n e r g y  f u n c t i o n  in t e r m s  of v 17

BTa 
k i n e t i c  en e r g y  f u n c t i o n  in t e r m s  ol v

and -~~~

B

u .  a l t e r n a t e  no ta t ion  f o r  R .  2 1 ( 2 _ S o )
ia ia

,13
u.  u .  u .ia ia ia
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N O M E N C L A T U R E  - Cont inued

Page (equa t ion)
Symbol Def in i t ion  of f i r s t  o c c u r re nc e

ve loc i ty  of point a 14 ( 2 - 2 6 )

—~~ —*
V
a 

V~~ Va 
1 6 (2 - 3 3 )

ve loc i ty  of cen ter  of m a s s  1 0 ( 2- 4 )

velo ’~ i t y  of p a r t i c le i 9 ( 2 - 1 )

V i n e r t i al  t ime d e r i v a t i v e  of v e ct o r  V 2 1 ( 2 - 5 7 )

B

V t ime  d e r i v a t i v e  of  v e c t o r  V with  r e s p e c t  2 1 ( 2 - 5 7 )

to f r a m e  B which has  i n e r t i a l  a n g u l a r

ve loc i ty  ~

X a p r i mi t i v e  t e r m  which  is q u a d r a t ic  in ~ ~1 l)

or in C

X a t r a n sf o r m e d  t e r n i  which  is qu a d r a t i  in ~e ( - l - l ~~) - end
— — S O ( 4 - 7 r ~)
~~ o r G

X-. f i r s t  par t  of the  t h r e e - p a r t  c o l u m n —
a decompos i t i on  of X

second pa r t  of t he  t h r e e — p a r t  c o l u m n -  5 1( 4 8 V 1)

d e c o m p o s i t i o n  of X

t h i r d  p a r t  of th~- th  r e v  -p a r t  c o l u m n -  5 1( 4  - s - I)

a d e c o m p o s i t i o n  of X
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N O M E N C L A T U R E  - Cont inued

Page  ( e q u a t i o n )
Sy m b ol  Defin i t ion  of f i r s t  oc c u r  r i - n .

X~~~ .th e lement  of X~~B 51(4 - 115)

Y a p r imi t ive  t e r m  which is quadrat ic  in 34 ( 4 - 3 )

~ or in G

Y a t r an s f o r m e d  t e r m  which is quadra ti c ~b (4-21) and
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A P P F NDIX

A . VECTORS, DYADICS AND TRIADICS

Our physical world i n c l u d e s  o bj e c t s  win  h \t  e l i I<  to c o u n t

or m n e a s e i  r e - . For this purpose the  i n t e - ~~ e - i -s  and  r i - a l  numn b e r s  W e - r e -

i n y c - n t  ~-d V On i~i na B y t h -  se n um n b e r s  d i d  not ex j s t (onl y t h e  c o u r i t i n c

ar i d m e a s u r ir l e  e x i s t e - d ) ;  bu t  e \ V e r i t L l i l l l y t h e se  n u m b e r s  we re  a ’. —

ceptecl  as e x i s t i n g  i i ia t h en i a t  i c al l y h e - c  au s e  t hey  ‘. ould be us~ -d f o r

c o u n t i n g  and m e a su r i ng .  These numbers ~•~~re used extensivel y

in  the  g e o m e t r y  and ph y s i c s  of o u r  3 - d i m e n s i on a l  w o r l d .  M a n y

g e om e t r i c  and ph y s i c a l  q u an t i t i e s  a c t u a l l y h a v e  3 real numbers

a s s o c i a t ed  w i t h  t h e m , and t h e r e f o r e  t i n - s e  g e o m e t r i c  and ph y s i c a l

q u an t i t i e s  We re  e v e n t u a l l y r e p r e s e n t e d  b y 3 - d i m e n s i o n a l  v e c t o r s  V

Ori ginall y, these vectors did not exist (onl y the- 3 real n u m b e r s

e x i s t e d ) ;  bu t  t - v e - n t u a l l y t h e s e  v e c to r s  w e r e  a cc e p t e d  as  e x i s t i n g  V

m a t h e m a t i c a l l y b e can ~~e t h e y  could  be used  f o r  p r o d u c i ng  th e’ 3 1
re -a l  n u m b e r s  as s o c iat ed  w i t h  the  ge - o m e t  n eal a r id ph y s i c a l  qua n h  —

t i e s  - S i m il i a r l y ,  d y a d i c s  e v en t u a l l y wi - r e - a c c e p t e d  a s  e x i s t i n g

b ec a u se  t hey  cou ld  be u s e d  t o  g e n e r a t e  \ V e c t o l • s ;  and  t r i a d i c s  w e r e -

a c c e p t e d  as e x i st in g  l x i  a r i s e  t h e y cou ld  be u s e d  t o  ge n e r a t e  d ya  —

d i e s ;  e t c .  V

Ve -  c t o  r s

If ~~~, ~~~ , a r i d ~ a r t -  u sed  t o  s ym b o l i c a l l y r e p r - s e - l i t  3 o r t i i e ’ e ’ rt -

al  d i r e c t i o n s  in  o u r  3 — d n m c - n s i o n a l  s p a ce  t h i n a v e  b r  V c a n  be-

w r i t t e n  as

A A AV~~ V x + V y V -~ ( A - I )
x y

N o t e -  t h a t  we a r e  niei t N a l  [y i r d d n n e  V - V , m i d  V ; n o r  a re we-

a d d i n g  ~~~, ~~~, and  ~ . .  i-~q r n e b i o n  ( A — I )  i s  n w r , V l y a s y m b o li c  r~~l f l e~

- “ i —

— ~~~—--- --~~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~~~~
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~
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~_• ~~~~~~~~~ ~~~~~~~~~~~~~ - V~V~• —

sen t a t i o n  of the f a c t  tha t  the  g e o m e t r i c  or ph y s i c a l  q ua r i t i ~ y h s

the  3 r ea l  n u mb e r s  V , V , and V in the  3 d i r e c t i o ns  ~~~ , ~ - - rid
x y z

~~~, r e s p e c t i v e ly .  The ope ra t ion  of the dot p r o d u c t  is th e n  ~ enare d

so tha t  we can p r o d u c e  real  n u m b e r s  f r o m  v e c t o r s .  Thus , f o r

the 3 o r thogona l  d i r ec t i o n s  ~~~ , ~~~ , ~ we def ine

A A A A A Ax ’ x l  x ’ y O x z O

A A A A ‘e A V

y x = 0 y y = 1 y z = 0 ( A - 2 )

A A A A A A
z x O  z y O z ’ z l

Then we e’et the v e c t o r  c om p o n e n t s  V , V , V as f o l l o w s
x y z V

—) .4

V =~~~~‘ V ~~~~ V ’ x
x

V~~~=~~~~’ ~~~~~~ (A - 3 )

AV z V Vz Vç•~

Ve ’. t o r  c o m p o n e n t s  can be c on v e n i e n t l y pu t  i n t o  m a t r ix  f o r m .

Thus , we d e f i n e  V Q and V~~ as fo l low s

V x

V Q = V ( A - 4 )

V z

= r~ ~Q y

-A 2 -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~ —- V~~~~~~~~ V $_V~~~~~~ 
V



We can s im il i a rl y p ut  the  3 d i r e ct i o n s  ~~~, ~~~, ~ in a m a t r i x  f or m -

Thus , we d e f i n e  Q and Qt as f o l l ow s

[
~1

I Al z
L ( A - 5 )

t A A AQ Lx y Z

Using  the o r d i n a r y  ru les  fo r  m a t r i x  mu l t i p l i ca t ion , Equa t ion  ( A - i )

can now be w r i t t e n  as

t
V = V Q Q Q V Q 

( A- 6 )

Similia rl y ,  Equation ( A - 2)  can now be w r i tt e n  as

Q Qt 
= 13 

( A - 7 )

where  13 
is the 3 x 3 un i t  m a t r i x  Equa t ion  ( A - 3 )  can now be

w r i t t e n  as

V
Q

Q V V ’ Q  (A-8)

One mi ght  a r g u e -  that  m a t r i ce s  w e - r e -  no t  i n t en d e d  to he used

wi th  v e c t o r s  as e le m e n t s  as in E q u a t i o n  (A - 5 ) .  The onl y r e s po n s e

to su c h  a n  ob j ec t i on  is t ha t  one t h e n  s im p l y r e d e f i n e s  the  n o t i o n

of a m a t r i x , bu t  u ses  the- same old m a t  ri~ symbol s, just as in

Equa t ion  ( A — i )  we t a c i t l y  r e d e - l  m e d  th~- not  ion of a d d i t i o n  so t h a t

-- VV~~~~~~~~~~~~ ~_ ~~~~~~~~~~~~~~~ 
V V V V ~V__V _~__~~~~_~ VV~ - _V ~VV_V - V V _ _ _ V~~~V_ ~~V~__V~
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it  would a lso  app ly to v e c t o r s .

Dyad ic  s

Ph y s i c a l  quan t i t i e s  which have 9 rea l  n u m b e r s  a s s o c i a t e d

w i t h  them a r e  c o n v e n i e n t ly r e p r e s e n t e d  by a dyad ic .  T h u s ,  the
V *9 

-dyadic  D can be w r i t t e n  as

D ~~~ + D  ~~~ + D  ~~xx xy xz

+ ~~~~~~~ + ~~~~~~~ ÷ ~~~~~~~ 
( A-9 )

+ D  ~~~ + D  ~~~ + D  ~~zx zy zz

A A A - 
-4-—p VWe denote  the x , y ,  z componen ts  of the  dyadic  D by the m a t r i x

DQ given  by

D D Dxx xy xz

D = D D D ( A - b )Q y x yy yz

D ID Dzx z y zz

*9 VD can now be w r i t t en  as

4-’ tD -
~ 

Q DQ Q (A - i l )

Since Q Qt 
= 13 we can solve th i s  f o r  DQ as fol lows :

4.4 tDQ = Q  D Q ( A - l 2 )

_ V \ V l _

- V~~ - V - -
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I

Thus , whe reas  it takes one dot mul t ipl ica t ion with Q to p r o d u c e

a set of r ea l  n u m b e r s  f r o m  a v e c t o r  (see Equat ion  ( A - 8)  ) ,  i t  t akes  V

two dot mul t i pl i ca t ions  with Q to p roduce  a set of rea l  n u m b e r s

f r o m  a d yad i c .

A dyadic t i m e s  a v e c t o r  is another  v e c t o r .  Thus ,

tD A = (Q D
0

Q) ( Q A Q )

= Qt ( D A )  ( A- 1 3 )

= Qt B

Thus we can w r i t e

• = implies DQA Q = BQ (A-14 )

4-,
Note that the side f r o m  which D is m u l t i p lied is i m p o r t a n t

because

z = (A~~ Q ) .  (Q t DQ Q)

= (A~~~DQ
)Q (A-iS)

= Qt (D t A Q)

= Qt C

= C ~~~Q

Thus we can wri t i -

_ V V\ ~~..

- - - - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



V~~~~~~~~V~~~~~~ V_I ~~~~~~~
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• D = C imp lies D~~ A Q = CQ ( A -l 6 )

The t r a n s p o s e  or con juga te  of D is the dyadic  D such  tha t

D A = A  ID (A-17)

We evident ly have

t t
D = Q D Q Q ( A - l 8 )

4-, tThus , the m a t r i x  of componen t s  of ID is the t r a n s p o s e  of the
~~~ 4- tm a t r i x  of componen ts  of D. If D equals  D then  D is called a

4—s 4—I 4—I
s y m m e t r i c  dyad ic ;  if D equals  -D then D is called an a n t i- s y m -

4-s
m e t r i c  or s k e w - s y m m e t r i c  dyadic .  Thus , D has  the  same

s y m m e t r y  as i ts  m a t r i x  of c o m p o n e n t s .

We can for m a d yadic  by juxta posi t ioning two v e c t o r s

4-’ - ‘ ‘  tC = A B = (Q A Q) (E Q Q) ( A - l 9 )

Qt ( A B
t ) Q

Thus

4-~ ‘—‘ tC = AB implies CQ = A Q BQ ( A - 2 0)

Note  t h a t  in g e n e ral , Ag  is not t h e  s ame  dyad ic  a s  gA - E v e n

we can f o r m  a d y a d i c  out of t w o  v e - et o r s , r io t  e v e ry

d y a d i c  can be f o r m e d  t h i s  s i m p l y .  In t h e  g e n e  n -al  c a s e , i t  t a k e - s
4-.

t h r e e -  v ec to r s  to specif y a ( l y a d i c  - For ‘ . - x a n i i ple , t h e  d y a d i c  I)

—

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~ - ~~~~~~~~~~~~



of Equa tion  ( A -9  ) can be w r i t t e n  as

~~~ ~~~~ ~~~~ A

• D x V  + y V  - r z V  (A - 2 1 )
x y z

whe re

A A AV = ID x + D  y + D  zx xx xy xz

A AV = D x -i- D y + D  z ( A - 2 2 )
y y x yy y z

A P A
V V D  x + D  ~~+ D  zz zx zy  zz

-5 -5 -5

Thus the 3 v e c t o r s  V V , and V (together with  t h e  bas i s  ~‘ee-
A 

x y z
t o n s  x , ~~~ , and ~) r e p r e s e n t  the  d yadic-  D. A l t e r n a t i ve l y ,  we i a n

4—S -, -4 -5
r e p r e s e n t  ID by W , W , and W as fo l lows :x y z

~ A AD W ~~~ + W y + W z  (A-23)
x y z

whe ri

A A AW = ID x + D  y + D  z
X xx yx zx

W = D  ~~+ D  ~~ - f D  ~ ( A - 2 4 )
y xy yy zy

A A AW = ID x + D  y + D  z
z xz yz zz

-4
For any  v e c t e ;r  A the  r o  is a dyadie- A s u c h  t h a t  t he  v e c t o r

-I

c r o s s  p r o d u c t  be c omes a d yadic  dot p r o d uc t .  Thus  f o r  any  A

a n d  B:

- A 7-

__*rn___ -
~~~~~~~~~~
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V -4 -4 — -4
A x B = A B (A - 2 5 )

V 

- 
-5 -5 .4

Since A * B = - B x A we also h av e -

-4 -I -5
A x  B = -B A ( A - 2 6 )

A A A
If A , A , A a r e  the  x , y ,  z c o m p o n e n t s  of A , t hen  A can be

x y z
given in ~~~, ~~~, ~ componen t s  as fol lows

A = -A~~~~ + A~~~~ + A~~~~ ( A -2 7 )

-A yz - A zx + A zy
- 

x y x

Thus , we can w r i t e

A Q t A Q  ( A -2 8 )

whe re

0 -A Az y

A = A 0 -A ( A _ 2 ~~)
Q z x

-A A 0
y x

Since AQ is skew-sy m m e t r i c , so is A:

A t 
= -X ( A-3 0 )

U s i n g  Equa t ions  ( A - I ? )  and (A - ~0 ) ,  i-~~1u a t i o ns  ( A - 2~~) and ( A - 2 b )

can now be w r i t t e n  I s  f o l l o w s

- V \ M ~~~
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A x B = A  B = B A (A-3 1)

= B  A A  • B

4. . . 
-0

The identity dyadic E is defined such that for  any vector A :

-0 4-0 .9 4-4 -0
A • E = A E • A (A -32)

can be expressed in term s of ~~~, ~~~, ~ as follows

~~~ Qt Q _ ~~~~~~~~~~~~~ (A-33)

If we write E = Q E~~Q then E~~ l.~, the 3 x 3 unit matr ix .  The
4-I -0

zero dyadic 0 is defined such that for  any vector A:

-0 4-0 ~0 ~~~~~ -0
A • 0 0 0 A (A-34)

~~.‘ tIf we write 0 = Q OQ Q then O
~~ 

is the 3 x 3 zero matrix .

We can write the well-known vector  tr i ple product identity

in the following form :

-4 .4 -0 -0 -0 -0 -0 -0 -4
A B • C = A x ( B x C ) (A C ) B - ( A  B ) C  (A- 35 )

-0 -4 -4 -0 +4 -0
= [ B A  - ( B • A ) E ]  c

From this it follows that

.4 -0 -0 -4 4-0
A B = B A  - (B A ) E  (A-36)

Next we write

-A 9-
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-0 -4 -0 -0
( A x B )  C ( A x B ) x C

-4 -0 -0
= -C x (A x B )

-4 -0 -0
= C ~ (B x A )

-0 .4 - 0  4 -ê -)
• A ) B  - ( C • B ) A  (A-37)

-4 -0 - 0  -0 .4
C A B  - B A ]

- 0 -0 -0 -0 -+
= C B A  - A B ]  c

In the last line we made use of the fact  that the transpose of
0 - 0

A B  is B A :

4-4 0 —0 —0
D A B  implies D = BA (A-38)

Hence we have

-0 -0 -0 -0 -0 -0
A ~ B = BA - A B  (A-39)

= A  B - B A

Triadics

A triadic T has the general form

T + T + Txxx xxy xxz

+ T + T + T ~~~xyx xyy xyz

+ T ~~~ + T + T (A-4 0)xzx xzy xzz

+ T yxx

/ t A A+ T  z x x + . . .z xx

-A lO-
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A special t r iadic is+defined as follows

+ + (A-4 1)

A A A  A A A  A A A-x yz - yzx + xzy

By d ir ect expansion we f ind

i~ 4 = A  (A-42 )

-0 _

Z B B (A-43)

- 4- . -+ -0 -0
A Z • B = A x B (A-44)

4,. . . -0
Thus the t r iadic  Z permits us to give equal t reatment  to A and

0 0
B in A x B ; i. e. , we ca n let both of them be vectors,  rather

than convert ing one of them to a dyadic.

Let E .. be the Levi -Civita symbol s defined as followsijk

+1, if (i , j, k) is an even
permutation of (1, 2 , 3)

-1, if (i , j, k) is an odd (A-45)
permutation of (1, 2 , 3)

0 , otherwise (if two or more of
i , j ,  or k are  equal)

Also let

A Ae x
I

= e Z = = Q (A-4 6)

A Ae 3

-All.- 
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4+
Z can now be expressed as

- E 
~
••k

~~
•
~~

•
~ k 

(A-47)
i = l  j l  k = 1  ~ -~

No te that ~~ is sirniliarly related to the Kronecke r symbol ö . .

wh e r e

( l ~ i f i = j

~ij 
(A- 48)

~ 0, otherwise (if i � j )

+4
Evidently, E can be written as

3 3
= 

~~~ E ~~
.. ~~~~~~ (A-49)

i = l  j = l  ~~~~~

Time Derivatives

We will now obtain expressions for the inertial  time deri-

vatives of vectors and dyadics in t e rms  of the time der ivat ives

with respect  to a rotating f r a m e .  Consider a f rame  denoted as

“f rame B” with rectangula r , orthogonal , ri ght-handed unit vec-.

tors xB~ ~ B’ Z B 
Then the vector can be written as

V Q~~VQ 
(A-50)

where

-A12-
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A
X

B

= 

~B 
(A-51)

AZ
B

and

X
B

V = V (A-52)

Vz B

If the inertial angular velocity of frame B is (5 , then

= ~B ~ ‘
~B 

~~B • = ‘
~B 

• ~ B
t 

(A-5 3)

and similiarly for and ZB. Hence

= 

~B 
Z
B] 

= 
.
~B 

[~B ~B Z B] (A-54)

= ~ B • Q
t

Taking the inertial time derivative of now yields

-, - t  t .
V = Q B V + Q

BV (A—55)

= ~~~~ Q~~VQ + Q
~~~

1;T
Q

B

—B • V +V

: 1 -A 13 -
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where V is the time derivative of V with respect to f r ame  B ( i . e .

the time derivative obtained if f r ame  B is considered f ixed) .

Thus , we have

-. -4 .4

V = V + U) x V (A- 56)

4-0
For a dyadic D

D = Q
BD,~ ~ B 

(A- 57)

we get sirniliarly

4-’ - t  t . t .
D = Q D  Q + Q D  Q + Q D  Q (A-58)

4-~ —B
r 

4~~= w  D + D  w + D

where we have used the transpose of Equation (A-54):

t
(A-59)

4-0
and we have defined D as the t ime derivat ive of D with respect

to f r ame  B. Evidently,  the time derivative of the identity

dyadic is zero

4-0 4-I
E = 0 (A- 60 )

Note that Equation (A-55) has one term in U) , and

Equation (A-58) has two terms in U) . Clearly,  for  the inertial

t ime derivative of a triadic we will get three t e rms  in U)

- A 14-
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B. MATRICES OF DYADICS, VECTORS, AND SCALARS

It is often convenient to mix matrices of scalars, vectors ,

and dyadics.  For example, Equation (A -22)  can be written in

matrix form as

V D QQ (B-i)

where Q and DQ 
are as in Equation (A-5) and (A-b ), and V is

given by

-0
Vx
-0

V~ V (B-2)
y

-0
Vz

Now let V~ be defined by

= 

~~ 

(B-3)

Then direct expansion shows that

Vt = Q t D~ (B-4)

But this resul t  can also be obtained directl y from Equation (B-i)

by jus t  formall y taking transposes.  The validity of such formal

manipulations must  be justified , but the just if icat ion merely

involves direct expansion.

Suppose V and W are  column matr ices  of two vectors  and

two scalars

-Bi-
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V = V2 W = (B-5)

V3 W3

V4 
W4

Here 
~~~~

, 

~~~ 
‘

~~~~~
‘ 

W2 are vectors and V3, V4, W3, W4 are

scalars. Next suppose we have four equations as follows

.4 4.9 —0 4—4 —, .4
= A~ W1 + A 12 W2 + A13W3 + A 14W4

A 21 
- W1 + A 2~ W~ + Z23 w 3 + (B-6)

V3 A 31 + A 32 
• + A 3~ W 3 + A 34 W 4

V4= Z41 
. + + A~~~W3 + A44W4

It is evident that we can put these equations in matrix f o r m  as

follows:

.4 4.4 4.4 .4 .4
V1 A11 A12 A 13 A14 W

1

= A 21 A22 A 23 A 24 • (B-?)

V3 AM A32 A 33 A 34 W3

V4 A41 A42 A43 A~~ W4

~~I - 4- t 4- —, .4 ~~— tSince A11 W1 = W1 
. A 11, A12 W2 = W

2 A12 , etc. , we can



-
~ _ _ _ __

also write this as

V.
2 v 3 v~j  =

= 
~~ 

w 3 w 4] . A~ 1 A 41
4-pt 4-~~tA12 A 22 A 32 A 42

A 13 A23 A 33 
A43

A 14 A 24 A34 A 44
(B-8)

Thus Equations (B-7) and (B-8) can be written as

V = A • W (B-9)

and

V~ = W~ A
t (B-b )

where A and A
t are the matrices in Equations (B-7) and (B-8),

respectively. Note that the dyadic elements of A were changed

to their transposes when A was changed to A
t.

In order to have a uniform procedure for forming transposes

of matrices whose elements may be dyadics . vectors, or scalars ,

we adopt the following convention: the transpose of a sc alar and

of a vector are  equal to the scalar , and vecto r , respectively:

t s (scalar s)
(B-Il)

V V ( v e c t o r V )

- B3-
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Consequently, At is formed from A by taking the element in the

~
th row and 3

th column of A and putting the transpose of this

element in the 
.th row and 

.th column of A t. Note that the same

procedure applies to forming V~ and W~ from V and W, respec-

tively.

Suppose X is a co lumn matr ix of n vectors

,

~~1

.

-0
X = X 2 

(B-12)

-0xn

We now define X b y

xl
X = (B-13)

xn

Note that X.  was defined in Appendix A for any vector X~. Now

we have defined X for  any column matr ix  of vec tors .  Next , we

note that our above convention on transposes requires that the

transpose of X must be

-B 4-
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~~ t]  (B- 14)

L 1  2 nj

Thus, )(
t is the negative of what one obtains by first taking the

row matr ix  of vec tors  and then replacing each of the row

elements by X1. The potential confusion here due to this

change in sign can be eliminating by simply remembering that

we start with a column matrix of vectors, then perform the “tilde

operation”, and only then do we take the transpose. In other

words, the “tilde operation” is only defined for a single vector

or for a column matrix of vectors (but not for a row matrix of

vectors).
.4 ~~-. ~ ‘t ‘

From Equation (A-31) we have A x B A • B = B • A. A

generalization of this is the following

~~~x = i~~~ x =~~~ ~~ = Z • i ~
(B- 15)

-0xn

Also

-B5- 
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‘ t 1-* -0 -0

A X X A X  = A ~~~~X X X
L 1 2 n

. r.....
=A  [X x x

1 2 n

[;t~~~~~t X~ (B-1 6)

A further generalization is

t t r— r-’ -.

Y x X  Y • X 1Y  •~ X X X
1 L 1 2 n

Y

= 
.
~ 

.[
~ 

xz . . -  X ]

‘12

Y
ni  

(B- i? )

-Y

A somewhat sirniliar situation occurs  if we have a vector

V given by

-136-
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~~~~~~~~~~~~~~~
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-0 
~~~~~~~~~~~~~ t tV 
~~~~, 

X~s. s X = X s (13-18)

where  the s. a r e  sca la r s  and s and s~ a r e  column and row mat r ices  of

these  sca l a r s .  We now form V as fol lows

~~~=~~~~~~~~~si = s
t5~

= 
~n]

x 2

xn

x x -
~~~~~

. x •s~L i  2 n-’ 1

(B- 19)
n

Equations (13-16). (B-17), and (B-19) have negative signs because

of the fact that the “tilde operation” and the transpose operation

do not commute (in fact , they anti-commute). *

Time derivatives of column matrices of vectors and row

-137-
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m a t r i c es  of vec to r s  a re  easily obtained f rom Equation (A-55)  or
( A - 5 6 ).  We f ind

B
X = X  + U)  X (B- 20)

B
X + X  U)

and

BX~ = + w (B-21)
B t

-013where U) is the inertial angular  velocity of a particular reference

f r a m e  (called f ra m e  B), and X is the column m a t r i x  of vec tors

thwhose j  e lement  is X.  (if X is as given in Equation (B-l2 )  ) ,
which is the time der ivat ive of X.  with respec t  to this par t icu-
lar r e f e re n c e  f r a m e .

-138-
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C. DETAILED EVALUATION OF D AND ~

We will now apply the fo rma l i sm of the previous two appen-

dices  and de rive the resu l t s  given in Section IV D. Before  doing

this we reca ll the fo l lowin g def in i tion of D given in Section IV C.

4-0 4.4
O 0 0

= MR D22 D23 
(C-i)

a 32 33

where

MR~~~~~~~~m.R. (C-2)

= ~~~~~~~~~ (C-3)

ID 22 = ~~~ m . R . Ri ( C - 4 )

‘~32 = Em.~ ( C -5 )

= ~~~ m . R .  (C-6 )

= ~~~~~~~~ ( C - ? )

In addition the re  a re  the re la t ionshi ps

-S — — t  4-p t
= ID 22 + D22 = 1a 

(C-8)

- (  1 —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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~
‘ a D32 + D23 (C-9)

y~ ID33 + = (C-b )

where

4—0 t ~~ tI = ~~~.,,, m.R. R. = I (C-i l )a . i ia ia a

~~~~~= ~~~~~~~~ ~~~ 
= m .R. - (C-12)

= ~~~~~ m.~~~ • B 
= 

B (C- l3)
i

In these equa tions the sum mation is over all pa r t ic les  (f rom i = 1
thto N) and the i particle is at position R. relative to the arbi-ia

t ra r y re ference  point a. R. is the inertial time derivative ofia
R . and can be expressed as followsia

R. = R. + W x R. (C- l4)ia ia ia

.B t B~~~~~B 
~ ia

where R. is the time derivat ive of R. with respect  to f r ame  Bia ia
which has angular velocity Ui with respect  to inert ial  space.

is a row matr ix of sca la r s , each of these scalars being the
time derivative of an internal  general ized coordinate

= [.B 
~ a2 

~B ]  (C-15)

-(.
‘~~-
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is a column matrix of vec torsia

ial

= (C-16)ia ia2

ian

whe r e

-0

~~R.
= 

ia ( C - l i)iaj
aj

B .  . . . .Thus, ~~~. is a column matrix of the partial derivatives of R. withia ia
respect to the internal gene ralized coordinates. This fact  can be

broug ht out more clearl y by introducing the operator v B as
follows: a

al

V 13 = 
_____ 

(C-18)
a

~ aZ

-C3-



Equations (C-l6)  to (C-18) can now be combined as follows :

= (C 19)

We define the operation of v B on a row matrix of vectors

as follows

~ a ~ a ial ~a 2 ian

(C-20 )

[
~ ~ ia1 ~~B ~ ia2 ~~B!an]

Bt
Note that V ~~~. is an n x n mat r ix  of vectors and the element inia

the J
th row and kth c olumn is

t ~~~~

(~~~~~ )jk 
= ~~~ ak 

= 

~~~j ~~~ak 

(C-2 1)

The transpose of ~ B ’
~ia is

-(:4-

~

_

~
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~(V I B )
t

ial
“a

( B
t

) ~ = (v ~ B ) t  (C-22)
a

(V tB )

t

ian
- a

and the element in the J
th row and k th column is

t t ~~~B 32~~((~~
) 

)~~~~~~

= 

~~~~~~~~~~~ ~~~ak~~~ aj

Comparing Equations (C-2 1) and (C-23 )  we note that if we ‘~~n

interchange the orde r of the partial derivatives then the matr ix

~~B ~ia is symmetr ic .  The interchange of the order of the par -

a
ti al de r ivat ives  is  p e r m is s ible if R ia and its f i r s t  two partial

derivat ives are continuous (i. e. are  continuous functions of the

in terna l  generalized coordinates) .

Since is a column matrix of vectors we have

= ~ B + ~~~~ (C-24)
ia ia ia

-C5-
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B.where ~~~. is the time derivat ive of Cl . in frame B. But we cania ia
write

= 

k~~~l :
~~~ k 

~ ak (C-25)

Thi s expression can be writ ten in t e rms  of ~ B 
if  we f i r s t  take

the transpose

~~ k = l ~~~~~
:
~~~k 

V (C-26 )

Taking the transpose of this and combining with Equation (C-24)

yields

.13 
= ~~~~~B

t

)

t 
~B + ~

B (C-27)

We will use this equation in Equations (C-2) to (C-13), as

required.

In order to evaluate Equations (C-2)  to (C-b ) we also need

an expression for R ia • Now from Equations (B-18 ) and (B-19)

we have

R. = ~~~~ (C-28)
ia a ia

where

-( 6-

~

-- -

~

--

~

.--

~

-- 
_ _ _  

~~-
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ial

Cl . = Cl . (C-29)
ia ia 2

- 
ian

From Equation (A-39)  we have

U) x R. = U) 
~ R. - R. U) (C- 30)

ia ia ia

Combining Equations (C-14), (C-28 ) ,  and (C-30)  now y ie lds

= 
B
t
~~ B + ;B Rj - 

~ ia 
• (C-3 1)

W e a r e now read y to evaluate Equations (C-2)  to ( C - J O ) .

Evaluation of MR ca

Multi ply ing 
~~ia by m. and summing ove r all the part icles

y i e ld s  imm edi a tel y

M R =  ~~~m j~ j a 
t 

Mi -MR .~~B

(C-32)

where we have made use of the expression

= Em~~
’
~ 

(C-33)

-C7- 
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from which it follows that

= ~~~ m . Cl B (C-34)

Evaluation of ID 22

From Equation (C-4) and (C-3l):

= m.R .  • = ~~
t
~~~~mi~~~ ~~a 

+ ~~~~~~ 

~~a 
- 

~~~
mi~~ia 

~~

(C-35)

where we have introduced 1a 
from Equation (C-il). The last

ter m on the ri ght hand side of Equation (C-35)  is not in an accept-

able form since we want to separate the te rms  involving the in-

d ivid ual pa rticles (i . e. t e rms  involving the pa rt icl e s ubscri p t s )

from terms like U) which do not involve the individual particles.

In order to do thi s we expand as follows, making use of

Equation (A-36) .

— 
~ B —t r,-~ -‘B’4-’ ‘ -‘Bl

R. • R. = R. I I IL W 1 E - R. w I (C-36)
ia ia L’~~ 

/ ia j
/—0 — ‘B\ —‘= IR. ‘w IR. -R . R.~~\ i a  / ia ia ia

But the last dyadic on the ri ght is  z e r o  beca u se if we d ot multiply
—0 —‘ ‘-‘B —,\ —P

it into an arbitrary vector V • we get R. R. ~W V) = 0ia aa
because R. x R. = 0. Consequently we hav e

ia ia

-.4 413 ‘ -‘B
R. • w • R .  = w R. R. = R. R. • w (C-37)

ia ia ia ia ia ia

- (:8 -

- -- —-- - -—-.———.—*-————-—--..--~-~--*=*—‘~--- . - - .~.- - ..*- -~~~ ———-—-———-- --— - --————--——--— -—- 



~ 

-

-0 -0

Note that R . R. and R. R. are tr iadic s. ID can now be
ia j a ia ia 22

e x p r e s s e d  as

= m.R.  • j~t 
= ~B

t 

~~ ~~~~~ 
• + ~ B ~~~~ - ~~~~~ m.~~. I~.

22 . i ia ia a . i ia ia a . i ia ia
1 i i

- 

(C-38)

Evaluation of ID23

From Equation (C-6 )  and (C-3 1):

D =~~~~m .R.  ~~~~~~~~~~~~~~~~~~~ Cl~~~÷ w  ~~~~~~~~~~~~~ 
; 1 3 3t

23 . 1 ia ia a . i ia ia a . i ia ia
1 i 1.

(C-39)

where  we have introduced from Equation (C-1Z) .  A gain , the

last te rm or the ri ght m u s t  be mani pulated so tha t U) can be

factored out . In order to this we use the following from

Equation (B- 16)

~~~~~ ~~~ ~ B (C-40)

Analogously

• = • (C-4 1)

But we can wri te

B E r nj R .  a 
- 

~~~~~~ m .~~~ 
‘ 

~ ia 
(C-42 )

-C9-
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From Equations (C-40) to (C-42)  we now have

- ~~ rn .~~
’. , ~~~ Cl~ = [.~B

t 
- ~~~~~ rn.~~. • ~ B~

] 
,

=~~~~~mi~~~
t 

~~~ia 
~~~~

(C-43 )

D23 ca n now be e x p r e s s e d  a s

~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~ B
23 . i ia ia a . i ia ia - 1 ia ia

1 1 1

(C-44 )

Exp licit Verification of Equation(4-81)

We can use Equation(4-81) of Section IV C to check the

cor rect ne s s  of the above explicit expressions for 
~ 2 and D23 .

When we dot multi ply D22 of Equation (C-38) into~~~ we get three

terms , and the second and third t e rms  cancel , as can be see n

from the following

~~~.
i ia ia ia ia

1

B -~~~~~~ -* -‘B-w L.~ m . R. R . • w
i ia ia

1

~~~~ / -‘ -‘B” -.-~B= m. ~R. R. - w ) w

-‘B -‘ -‘• ~~~~rn .R. R. ~~

-‘= U) ~~ m.R. R. • U) (C-4 5)
1 ia ia

i

-d o-
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Hence , ID22 W r e d u c e s  to

D22 
, ~~B 

= ~~~ rni.~ ~ i~a 
~~~~ (C-46 )

W hen we m ulti ply D23 of Equation (C-44)  into we get two

ter ms but the f i r s t  t e rm is zero  because ~~~. 
- Cl : ’ is an n x n

ia ia
skew-symmetr i c  matr ix  of vec to r s ,  as can be seen f rom making

use of Equation (B- 17) which yie lds

• = -Cl~~ 
. (C-47 )

Evidently the matr ix  on the lef t  is equal to the negative of its

transpose.  From thi s it follows that

(C-4 8)

Hence D ~ reduces to23 a

l~23 =~~~~miP~
t 

~~ a 
~~~~~~~ ~~~~~~~~~~ 

~~ a 
~~~~ (C-49)

Here we have made use of Equation ( B - l9 )  to y ield

(C-50)

Equations ( d - 4 6)  and ( C-4 9 )  now s~~ow ~p l ic i t ly  that Equat ion(4- 8l)

is satisfied ; i . e .

• ~~B + = (C-~~l)

-Cli-

~
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Evaluation of

From Equation ( C - 3 )  and ( C -2 7 )  we immediate l y get

= ~~~~~~ ~~~~~ = (~ B~~a~~ 

~ B 
+ ~

B ~B ( C - 5 2 )
1 \~~ a /

where we have made use of Equation (C-33)  in the fo rm

V B~
’ a = m. V B 

B (C-53)
1

Bt .4

~ ~
‘B C

ia 
is symmet r ic  (i. e. if R ia and its f i r s t  two partial

t
deriv atives are continuous)  then ~ is also s y m m e t ri c .

~B a

Evaluation of ID 32

F ro m Equation (C- 5)  and (C-27)  we get

= Em. Cl~~ ~~a 
= Em. [ ( B

t t  .
B)] ~~ a ~~~~ m.~~~ ~B

(C-54)

In order to separate w f rom the par t ic le  dependent f ac to r s  in

th e sec ond term on the ri ght , we use Equation (B- 15) in the fo rm

“~‘B B ~‘B “SB
W ~ C . = W  Cl . (C-55)

ia ia

Consequent ly , D 32 can be wri t ten as

D 32 ~~~m~~
B Rj  (v B~~~~ )~~~~ 

~~~~ ~~~ m .~~~
1 1 

~ a 
i

( C - 5 6 )

L__.i_ium:=;~ -~~~~~ ~h1 -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~



Evaluation of ID33

For we obtain from Equations (C-?) and (C-27)

D33 =E m .~. . Cl~~~ =E mi
[(V B

C
~~~) 

~ IL C B +E m . U)
~~~ 

Cl~~

=Em .  [(v B Cl~
t

)
t 

~ 
Cl~~ ~~~~ .Em ~~~

1

( C - 5 7 )

- .

where we have again  used Equation (C-5~~) to separa te  Ui f rom

the particle dependent factor.

j
th Row of ID 32 

,

and 

~~~~
Note that (v 

~~

. ) ~ is a co lumn ma t r ix  of v e c to r s , and
ia a

D 32 
is also a co lumn ma t r i x  of v e c t o r s , w h e r e a s  b~~~~is an n x n

mat r ix  of sca la rs .  It is in s t r u c t i v e  to examine  the j vector of
D32 and the J

th row of ID 3 - In order  to do this  we note f ro m

Equation ( C-2 2 )  that the j~ row of (V B C~~~)
t 

is (v B~~~j )
t

Thus the j vec to r  of D32 is

~~~32~j  
= Emi R .  (v B~~ j )

t
~~ + • 

~~~ 
m. Cl 13 . ( C- 5 8)

and the 
.th row of is

(~ 33
) j .  = ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ + •E~~~~~~~

T
~~~~~

J

= 
B

t 
~~~ m. (~13~r~

) 
~~~~~ 

+ . . ~ Bt

a ( C - S 9 )
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Note that by writin g out only the Jth row of D33 (rather than the
whole ma t r ix )  it is possible to separate  

~ a f r o m  the pa r t i c l e

dependent f ac to r .

Evaluation of Ia

According to Equation (C
~

8)
’4
i’a is equal to the sum of

and its t ranspose.  ID 22 is given Equation (C-38)  and therefore

— t ~~~
‘ ~~t ~~ ~~~~ ~B 4-’ ~ Bt 

~~~~~~ —t -‘ -‘B
ID22 = ~~~ m . R .  R~ = 4~

mi1
~ia Cl i 

~ a + ‘a ‘~~ - ~~~m.R. R.

(C-60)

Now note that  the third t e r m s  of b22 and are  the ne ga t ive s

of each other , and hence these t e r m s  cancel .  Consequentl y

l’
a ~~~~~~~~~~ ~~~~a +E m i~~ia 

~~~Bt
~~B~~~~B 7 7

(C-6 1)

Note that this can also be obtained from Equation (A - 5 8 )

in the form

4-’ 
~~~ 

.*~B _  4-’I = 1  + w  ‘1 - I  w (C- 62 )
a a a a

where

~~~ ~B ~~ a 
= ~Bt

V ~
øi

~ (C- 63)
a j = l  aj ~~B a ~B a

aj  a

and where

- Cli-



-. —

~~~~~~~~~~~
-

~~
-- ---

~~~~~
-. --

~~
--.-

V B~~~ =E m j f r B R ia) R i
t
a + E m .R i

R. - ~~~ m .R ~~~~
1 1 (C-64)

Evaluation of a

A c c o r d i n g  to Equation ( C- 9 ) ,  is  equal to the sum of

and D2 3 .  D32 is given in Equation (C-56) .  D23 is given in

Equat ion ( 0 - 4 4 ) ;  hence D23 is given by

~~2~~=Em . Cl~ Em .  +

( C - 6 5 )

Adding D32 and D23 y i e l d s

~B =~~~~ n~. Cl B ~~~~~~ 
~~~~~~~~~ (V B Cl

~~~)~~~~ 
+ ( C - e m )

C 1

where we have made use of

= ~~~~~~~~~ - + Em .R.  . ( C - n T )
a . i ia ia . i ia ia

i 1

plus the fact that ~
a 

• ~B 
= ~ a •

Note that Equation (C-6 6)  can also be obt ,une d  f r o m

Equation (B -2 0)  in the fo rm

= + ~ B • ~ B (( ~~

( I ’ ~-
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-
~~~~

w h e r e

= 

B 

::~ (C-69)

The transpose of ~ 
B 
~5 actuall y more easily written , and

therefore we write

B 

~~~~~~~ ::~ 
= 

B B 
(C-7 0)

and

Bt 
= E (~~B~~iai~ 

Cl~~ + Em.~ .

(C-7 1)

lie n e

= ( B
r
) ( C - 7 2 )

whe re

= ~~~~~~~B 
(~~B~~ia)

t 
+ ~~~ m. (V B Cl~~

t
)

t 

~~

(C-? 3)

B
Substitutin g ~ froni Equations (C-?2) and (C-73) into
Equation (C-68) yields as in Equation (C-66).

-C 16-

_ _ _



Evaluation of y 
a

According to Equation (C-b ), is equal to the sum

and its transpose. D 33 is given in Equation ( C-57) ,  and the ref ore

i i 
~ a

(C-74)

Now note that the second terms of and D
33 

are the negatives

of each other (because of Equation (C-47)), and hence these terms

ca ncel .  Consequently

m. [( Bt
) 

t 

Cl~~ + E m. C~ V~~ (C-75)

We can also get this directl y f r o m  Equation (C-13) as f ol lows

~ a~~~~~~~ak 
Emj [E k(~~~)J~~~

t
+

• [
~ ~ak (~~~B)}a (C-76)

We ha~ now obtained (x1)Ijcit expressions for all the

I~ n t o t s  ot I) ( s t - t  E qua t ion (4 — 68~~r (C- i) ) and ~i (see Equa t ion (4_ 74) )~

-C l ? -
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